返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • AI自动化测试:技术原理、平台搭建与工程实践 腾讯TuringLab团队AI游戏AI自动化测试敏捷测试978711165
  • 新商品上架
    • 作者: 腾讯TuringLab团队著
    • 出版社: 机械工业出版社
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    句字图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 腾讯TuringLab团队著
    • 出版社:机械工业出版社
    • ISBN:9783604389978
    • 版权提供:机械工业出版社

     

    TuringLab实验室在商业游戏测试中的先进技术和经验总结,引领自动化测试未来发展

     

      商品基本信息


    商品名称:

      AI自动化测试:技术原理、平台搭建与工程实践

    作     者:

      腾讯TuringLab团队

    市 场 价:

      89.00元

    ISBN  号:

      9787111654919

    出版日期:

      2020-06

    页     数:

      219页

    字     数:

      128千字

    出 版 社:

      机械工业出版社


     

    目录

    前言

    作者简介

    第一部分 原理篇

    第1章 AI与自动化测试2

    1.1 自动化测试的发展与现状2

    1.2 AI的发展与应用4

    1.3 AI与自动化测试相结合6

    1.4 本章小结6

    第2章 图像识别算法7

    2.1 图像识别7

    2.2 传统的图像识别算法9

    2.2.1 模板匹配算法9

    2.2.2 特征点匹配算法11

    2.2.3 梯度特征匹配算法13

    2.3 基于深度学习的图像识别算法15

    2.3.1 卷积神经网络15

    2.3.2 卷积神经网络模型16

    2.4 图像识别方法在游戏测试中的应用22

    2.4.1 特征点匹配在场景覆盖性测试上的应用22

    2.4.2 游戏场景图像的物体识别25

    2.5 本章小结26

    第3章 强化学习27

    3.1 基本理论27

    3.2 基于值函数的强化学习30

    3.2.1 值函数30

    3.2.2 DQN31

    3.3 基于策略梯度的强化学习32

    3.3.1 策略梯度33

    3.3.2 Actor-Critic33

    3.3.3 DDPG35

    3.3.4 A3C37

    3.4 强化学习在自动化测试中的应用38

    3.5 本章小结40

    第4章 模仿学习41

    4.1 什么是模仿学习41

    4.2 模仿学习研究现状42

    4.2.1 行为克隆42

    4.2.2 逆强化学习43

    4.3 模仿学习在自动化测试中的运用45

    4.4 本章小结50

    第5章 Android设备调试52

    5.1 Android调试桥52

    5.1.1 adb常用命令介绍53

    5.1.2 ADB原理56

    5.2 Android实时截屏57

    5.2.1 minicap介绍57

    5.2.2 minicap使用58

    5.3 Android模拟器60

    5.3.1 Android Emulator介绍60

    5.3.2 其他模拟器介绍65

    5.4 本章小结65

    第二部分 平台篇

    第6章 AI SDK平台介绍68

    6.1 Game AI SDK平台功能69

    6.2 Game AI SDK平台架构设计71

    6.3 Game AI SDK平台流程72

    6.3.1 AI算法流程72

    6.3.2 图像识别任务流程73

    6.4 Game AI SDK平台模块结构74

    6.4.1 图像识别模块74

    6.4.2 AI算法模块76

    6.5 本章小结77

    第7章 AI SDK自动化测试平台搭建78

    7.1 Windows环境搭建78

    7.1.1 创建虚拟环境78

    7.1.2 安装AI SDK79

    7.1.3 安装SDK Tool79

    7.1.4 安装AI Client80

    7.2 Linux环境搭建81

    7.3 如何运行AI SDK85

    7.3.1 安装APK85

    7.3.2 游戏配置说明86

    7.3.3 启动服务93

    7.4 本章小结95

    第8章 AI SDK Tool详解96

    8.1 配置项目96

    8.1.1 安装97

    8.1.2 配置项目98

    8.2 标注GameReg任务101

    8.3 标注UIRecognize任务106

    8.4 调试108

    8.4.1 AI SDK Tool和GameReg之间的调试108

    8.4.2 AI SDK Tool和UIRecognize之间的调试109

    8.5 AI SDK Tool的其他功能111

    8.5.1 添加动作配置111

    8.5.2 添加地图路线112

    8.5.3 图结构路径配置113

    8.6 本章小结115

    第9章 图像类接入Game AI SDK平台116

    9.1 通过SDK Tool生成平台所需数据117

    9.1.1 生成UI配置文件117

    9.1.2 生成模仿学习样本120

    9.2 基于图像的AI方案125

    9.2.1 基于小地图的特征提取126

    9.2.2 样本扩充126

    9.2.3 模型和训练126

    9.3 使用Game AI SDK平台进行AI自动化测试——手机兼容性测试128

    9.4 使用Game AI SDK平台进行AI自动化测试——场景测试131

    9.5 使用Game AI SDK平台进行AI自动化测试—花屏类测试131

    9.6 本章小结134

    第10章 数据类手游接入GameAI SDK平台135

    10.1 Game AI SDK接入方案136

    10.1.1 集成GAutomator实现游戏接口136

    10.1.2 通过游戏接口获取AI输入数据138

    10.1.3 通过动作接口执行AI动作139

    10.2 基于数据的AI方案介绍140

    10.2.1 算法描述141

    10.2.2 实现功能142

    10.3 使用Game AI SDK平台进行AI自动化测试——跑图覆盖测试143

    10.4 使用Game AI SDK平台进行AI自动化测试——手机性能测试145

    10.5 使用Game AI SDK平台进行AI自动化测试——地图平衡性测试146

    10.5.1 游戏AI的课程学习方式147

    10.5.2 游戏AI的深度强化学习训练架构147

    10.5.3 深度强化学习的神经网络模型设计147

    10.6 本章小结148

    第11章 AI SDK平台二次开发150

    11.1 AI SDK平台二次开发介绍150

    11.1.1 AI SDK二次开发框架151

    11.1.2 AI SDK二次开发API154

    11.2 基于规则的AI设计和开发159

    11.2.1 基于规则的AI介绍159

    11.2.2 基于规则的AI实践159

    11.3 基于模仿学习的AI设计和开发168

    11.3.1 基于模仿学习的AI介绍168

    11.3.2 基于模仿学习的AI实践169

    11.4 基于强化学习的AI设计和开发175

    11.4.1 基于强化学习的AI介绍175

    11.4.2 基于强化学习的AI实践176

    11.5 本章小结185

    第三部分 最佳实践篇

    第12章 手机游戏兼容性测试188

    12.1 基于图像的兼容性测试188

    12.2 基于UI动作传递的兼容性测试193

    12.3 基于UI自动探索的兼容性测试197

    12.4 本章小结200

    第13章 自动化Bug检测201

    13.1 贴图丢失201

    13.2 角色穿墙203

    13.3 碰撞穿模207

    13.4 本章小结210

    第14章 自动机器学习211

    14.1 自动机器学习概述211

    14.2 参数搜索策略212

    14.3 NNI安装和使用213

    14.4 本章小结219


     

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购