内容简介
本书介绍了与人工智能密切相关的概率论与数理统计的内容。全书分成两大部分,第一部分主要介绍概率论的知识,涵盖概率论的基本概念、一维随机变量及其分布、二维随机变量及其分布,数字特征,大数定理和中心极限定理外,还增加了信息论基础知识、若干集中不等式的相关知识。第二部分主要介绍常见的数理统计知识,包括抽样分布、参数估计(包括贝叶斯估计)、假设检验、方差分析。为了满足机器学习的两大目标任务:分类和预测,又介绍了回归分析和聚类分析。还介绍了概率论与数理统计的具体知识点在人工智能里的应用。在最后的附录二给出了数理统计部分问题的python程序实现。在每一章每一小节后面配备各种题型的习题。每章后面配备本章的总复习题。习题分为两类:习题A可以作为对本章知识内容的考察,习题B中收集了历年研究生入学考试试题,有利于考研复习。本书适合从事机器学习的在校学生、高校研究者使用,也可作为高等理工科院校非数学专业的学生学......