返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 正版 TensorFlow 2 人工神经网络学习手册 ANN架构机器学习项目实战 TensorFlow 2在人工神经网络
  • 新商品上架
    • 作者: 无著
    • 出版社: 化学工业出版社
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    句字图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 无著
    • 出版社:化学工业出版社
    • ISBN:9780243935751
    • 版权提供:化学工业出版社

    商品名称:

    TensorFlow 2 人工神经网络学习手册 

    营销书名:

    ANN架构机器学习项目实战,手把手指导,讲解详细 

    作者:

    (印度)P.萨朗(Poornachandra Sarang) 编著 

    定价:

    168.00 

    ISBN:

    978-7-122-40759-7 

    关键字:

    深度学习;人工智能 

    重量:

    780克 

    出版社:

    化学工业出版社

    开本:

    16 

    装帧:

    平 

    出版时间:

    2022年04月 

    版次:

    页码:

    426 

    印次:

    理论与实际项目结合,实例丰富,讲解详细,可操作性强,易于理解和掌握

    随着深度学习理论的不断发展以及 TensorFlow 的广泛应用,基于深度学习的信号分析模型在不同领域产生了深远的影响。本书为TensorFlow 2的使用指南,从软件安装、数据下载、文件管理等方面入手为初级开发者提供细致而全面的介绍。在此基础上,本书系统地介绍了TensorFlow 2在人工神经网络实战项目中的应用,全面覆盖了各种深度学习架构,内容涉及:入门级的二分类模型、回归模型等;进阶级的文本生成模型、图像生成模型、机器翻译模型、时序预测模型等;以及最新的Transformer模型等。在每个项目中,本书完整地展示了模型设计、网络搭建、模型训练、模型保存、结果预测与显示的全过程,并提供了详细的实现代码。本书将深度学习理论与实际项目结合,为初学者搭建了进入人工智能领域的学习平台,为深度学习算法开发者提供了较为全面的应用范例,充分满足了不同群体的学习需求。

    P.萨朗(Poornachandra Sarang),Poornachandra Sarang博士在IT行业的职业生涯始于20世纪80年代,在这段漫长的职业生涯中,他广泛研究了各种技术。他曾在圣母大学和孟买大学教授计算机科学与工程。他曾是计算机科学学科的博士生导师,目前是计算机工程学科博士学位论文咨询委员会成员。他目前的研究兴趣是机器/深度学习,发表了多篇期刊文章,并在多个会议上发表过演讲。

    周悦,北京交通大学博士,美国北卡罗来纳大学教堂山分校联合培养博士,在图像处理与模式识别领域有丰富的研究经验,主要研究方向为图像检测、三维目标分割、图像配准等。

    曹旭阳,北京交通大学博士,京东集团DMT博士管培生,在计算机视觉领域具有8年算法经验,对机器学习算法有较深理解,主要研究方向为图像分割、半监督学习、图像超分等。

    第1章 TensorFlow快速入门 001
    1.1 什么是TensorFlow 2.0 002
    1.1.1 TensorFlow 2.x平台 002
    1.1.2 训练 003
    1.1.3 模型保存 005
    1.1.4 部署 005
    1.2 TensorFlow 2.x提供什么 006
    1.2.1 TensorFlow中的tf.keras 006
    1.2.2 Eager执行 006
    1.2.3 分布式计算 007
    1.2.4 TensorBoard 007
    1.2.5 视觉套件(Vision Kit) 008
    1.2.6 语音套件(Voice Kit) 008
    1.2.7 边缘套件(Edge TPU) 008
    1.2.8 AIY套件的预训练模型 009
    1.2.9 数据管道 009
    1.3 安装 009
    1.3.1 安装步骤 009
    1.3.2 Docker安装 010
    1.3.3 无安装 010
    1.4 测试 010
    总结 012

    第2章 深入研究TensorFlow 013
    2.1 一个简单的机器学习应用程序 013
    2.1.1 创建Colab笔记本 014
    2.1.2 导入 015
    2.1.3 创建数据 016
    2.1.4 定义神经网络 018
    2.1.5 编译模型 018
    2.1.6 训练网络 018
    2.1.7 检查训练结果 019
    2.1.8 预测 021
    2.1.9 完整源码 022
    2.2 使用TensorFlow解决二分类问题 024
    2.2.1 创建项目 024
    2.2.2 导入 024
    2.2.3 挂载Google云盘 025
    2.2.4 加载数据 026
    2.2.5 数据处理 027
    2.2.6 定义ANN 030
    2.2.7 模型训练 032
    2.2.8 完整源码 036
    总结 039

    第3章 深入了解tf.keras 040
    3.1 开始 040
    3.2 用于模型构建的函数式API 041
    3.2.1 序列化模型 041
    3.2.2 模型子类 043
    3.2.3 预定义层 044
    3.2.4 自定义层 044
    3.3 保存模型 046
    3.4 卷积神经网络 049
    3.5 使用CNN做图像分类 050
    3.5.1 创建项目 051
    3.5.2 图像数据 051
    3.5.3 加载数据 052
    3.5.4 创建训练、测试数据集 052
    3.5.5 准备模型训练数据 053
    3.5.6 模型开发 055
    3.5.7 定义模型 060
    3.5.8 保存模型 073
    3.5.9 预测未知图像 073
    总结 075

    第4章 迁移学习 076
    4.1 知识迁移 076
    4.2 TensorFlow Hub 077
    4.2.1 预训练模型 078
    4.2.2 模型的使用 079
    4.3 ImageNet分类器 080
    4.3.1 创建项目 080
    4.3.2 分类器URL 080
    4.3.3 创建模型 081
    4.3.4 准备图像 082
    4.3.5 加载标签映射 083
    4.3.6 显示预测结果 084
    4.3.7 列出所有类别 085
    4.3.8 结果讨论 085
    4.4 犬种分类器 085
    4.4.1 项目简介 086
    4.4.2 创建项目 086
    4.4.3 加载数据 086
    4.4.4 设置图像和标签 088
    4.4.5 图像预处理 091
    4.4.6 处理图像 091
    4.4.7 关联图像与标签 092
    4.4.8 创建数据批次 093
    4.4.9 显示图像函数 094
    4.4.10 选择预训练模型 095
    4.4.11 定义模型 095
    4.4.12 创建数据集 097
    4.4.13 设置TensorBoard 099
    4.4.14 训练模型 100
    4.4.15 训练日志 100
    4.4.16 验证模型性能 101
    4.4.17 预测测试图像 101
    4.4.18 可视化测试结果 103
    4.4.19 预测未知图像 105
    4.4.20 使用小数据集训练 106
    4.4.21 保存、加载模型 107
    4.5 提交你的工作 108
    4.6 进一步工作 108
    总结 109

    第5章 使用神经网络处理回归问题 110
    5.1 回归 110
    5.1.1 定义 110
    5.1.2 应用 111
    5.1.3 回归问题 111
    5.1.4 回归问题的类型 111
    5.2 神经网络中的回归问题 112
    5.2.1 创建项目 112
    5.2.2 提取特征和标签 113
    5.2.3 定义、训练模型 113
    5.2.4 预测 114
    5.3 分析葡萄酒质量 114
    5.3.1 创建项目 114
    5.3.2 数据准备 114
    5.3.3 下载数据 115
    5.3.4 准备数据集 115
    5.3.5 创建数据集 115
    5.3.6 数据归一化 116
    5.3.7 创建模型 119
    5.3.8 可视化评价函数 119
    5.3.9 小模型 120
    5.3.10 中模型 122
    5.3.11 大模型 124
    5.3.12 解决过拟合 126
    5.3.13 结果讨论 129
    5.4 损失函数 130
    5.4.1 均方误差 130
    5.4.2 平均绝对误差 131
    5.4.3 Huber损失 131
    5.4.4 Log Cosh损失 131
    5.4.5 分位数损失 131
    5.5 优化器 132
    总结 132

    第6章 Estimators(估算器) 134
    6.1 Estimators概述 134
    6.1.1 API接口 135
    6.1.2 Estimators的优点 135
    6.1.3 Estimators的类型 136
    6.1.4 基于Estimators的项目开发流程 137
    6.2 设置Estimators 139
    6.3 用于分类的DNN分类器 139
    6.3.1 加载数据 140
    6.3.2 准备数据 140
    6.3.3 Estimators输入函数 141
    6.3.4 创建Estimators实例 142
    6.3.5 模型训练 142
    6.3.6 模型评价 143
    6.3.7 预测未知数据 144
    6.3.8 实验不同的ANN结构 144
    6.3.9 项目源码 145
    6.4 用于回归的LinearRegressor 147
    6.4.1 项目描述 147
    6.4.2 创建项目 147
    6.4.3 加载数据 148
    6.4.4 特征选择 148
    6.4.5 数据清洗 149
    6.4.6 创建数据集 151
    6.4.7 建立特征列 152
    6.4.8 定义输入函数 154
    6.4.9 创建Estimators实例对象 154
    6.4.10 模型训练 155
    6.4.11 模型评估 155
    6.4.12 项目源码 156
    6.5 自定义Estimators 158
    6.5.1 创建项目 159
    6.5.2 加载数据 159
    6.5.3 创建数据集 159
    6.5.4 定义模型 159
    6.5.5 定义输入函数 160
    6.5.6 将模型转换为Estimator 160
    6.5.7 模型训练 161
    6.5.8 模型评价 161
    6.5.9 项目源码 161
    6.6 为预训练模型定义Estimators 163
    6.6.1 创建项目 163
    6.6.2 导入VGG16 163
    6.6.3 创建自定义模型 163
    6.6.4 编译模型 165
    6.6.5 创建Estimator 165
    6.6.6 处理数据 165
    6.6.7 训练、评价 166
    6.6.8 项目源码 166
    总结 167

    第7章 文本生成 169
    7.1 循环神经网络 170
    7.1.1 朴素RNN 170
    7.1.2 梯度消失和梯度爆炸 171
    7.1.3 LSTM(一个特例) 171
    7.2 文本生成 174
    7.2.1 模型训练 174
    7.2.2 预测 175
    7.2.3 模型定义 176
    7.3 生成新生儿名字 176
    7.3.1 创建项目 176
    7.3.2 下载文本 177
    7.3.3 处理文本 177
    7.3.4 定义模型 180
    7.3.5 编译 181
    7.3.6 创建checkpoints 182
    7.3.7 训练 182
    7.3.8 预测 182
    7.3.9 项目源码-TextGeneration BabyNames 184
    7.3.10 保存、重用模型 188
    7.4 高级文本生成 188
    7.4.1 创建项目 189
    7.4.2 加载文本 189
    7.4.3 处理数据 190
    7.4.4 定义模型 191
    7.4.5 创建checkpoints 191
    7.4.6 自定义回调类 192
    7.4.7 模型训练 193
    7.4.8 结果 193
    7.4.9 断点续训练 194
    7.4.10 过程观察 195
    7.4.11 项目源码 196
    7.5 进一步工作 199
    总结 199

    第8章 语言翻译 200
    8.1 sequence-to-sequence 模型 200
    8.1.1 编码器、解码器 201
    8.1.2 Seq2seq模型的缺点 203
    8.2 注意力模型 203
    8.3 英语翻译为西班牙语 204
    8.3.1 创建项目 204
    8.3.2 下载数据集 205
    8.3.3 创建数据集 205
    8.3.4 数据预处理 207
    8.3.5 GloVe词嵌入 212
    8.3.6 定义编码器 214
    8.3.7 定义解码器 215
    8.3.8 注意力网络 216
    8.3.9 定义模型 221
    8.3.10 模型训练 222
    8.3.11 预测 222
    8.3.12 项目源码 229
    总结 237

    第9章 自然语言理解 238
    9.1 Transformer简介 238
    9.2 Transformer详解 239
    9.2.1 下载原始数据 240
    9.2.2 创建数据集 240
    9.2.3 数据预处理 240
    9.2.4 构建语料库 240
    9.2.5 准备训练集数据 243
    9.2.6 Transformer模型 244
    9.2.7 多头注意力(机制) 245
    9.2.8 Scaled Dot-Product 注意力模块 248
    9.2.9 编码器结构 249
    9.2.10 编码器 252
    9.2.11 解码器结构 254
    9.2.12 定义解码器 257
    9.2.13 Transformer模型 259
    9.2.14 创建训练模型 261
    9.2.15 损失函数 261
    9.2.16 优化器 262
    9.2.17 编译 262
    9.2.18 训练 262
    9.2.19 预测 263
    9.2.20 测试 263
    9.2.21 项目源码 264
    9.3 下一步是什么 276
    总结 276

    第10章 图像描述 278
    10.1 项目简介 280
    10.2 创建项目 280
    10.3 下载数据 280
    10.4 解析Token文件 282
    10.4.1 加载数据 282
    10.4.2 创建列表 283
    10.5 加载InceptionV3模型 284
    10.6 准备数据集 285
    10.7 提取特征 285
    10.8 创建词汇表 286
    10.9 创建输入序列 286
    10.10 创建训练数据集 287
    10.11 创建模型 288
    10.12 创建编码器 288
    10.13 创建解码器 288
    10.13.1 Bahdanau注意力机制 289
    10.13.2 解码器功能 289
    10.13.3 解码器初始化 289
    10.13.4 解码器调用方法 290
    10.13.5 注意力得分 290
    10.13.6 注意力权重 290
    10.13.7 上下文向量 291
    10.13.8 解码器实现 291
    10.14 编码器、解码器实例化 294
    10.15 定义优化器和损失函数 294
    10.16 创建checkpoints 296
    10.17 训练函数 297
    10.18 模型训练 298
    10.19 模型预测 298
    10.20 项目源码 301
    总结 310

    第11章 时间序列预测 311
    11.1 时间序列预测简介 311
    11.1.1 什么是时间序列预测 311
    11.1.2 预测中的问题 312
    11.1.3 时间序列组成 312
    11.1.4 单变量与多变量 312
    11.2 单变量时间序列分析 313
    11.2.1 创建项目 313
    11.2.2 准备数据 313
    11.2.3 创建训练集和测试集 316
    11.2.4 创建输入张量 319
    11.2.5 构建模型 320
    11.2.6 编译和训练 320
    11.2.7 评估 320
    11.2.8 预测下一个数据点 322
    11.2.9 预测数据点区间 323
    11.2.10 项目源码 325
    11.3 多变量时间序列分析 330
    11.3.1 创建项目 330
    11.3.2 准备数据 331
    11.3.3 检查平稳性 331
    11.3.4 探索数据 332
    11.3.5 准备数据 333
    11.3.6 创建模型 335
    11.3.7 训练 335
    11.3.8 评估 335
    11.3.9 预测未来点 336
    11.3.10 预测数据点区间 337
    11.3.11 项目源码 339
    总结 343

    第12章 风格迁移 344
    12.1 快速风格迁移 345
    12.1.1 创建项目 345
    12.1.2 下载图像 345
    12.1.3 准备模型输入图像 347
    12.1.4 执行风格迁移 348
    12.1.5 显示输出 348
    12.1.6 更多结果 348
    12.1.7 项目源码 350
    12.2 自定义风格迁移 351
    12.2.1 VGG16结构 352
    12.2.2 创建项目 352
    12.2.3 下载图像 353
    12.2.4 显示图像 354
    12.2.5 图像预处理 354
    12.2.6 构建模型 355
    12.2.7 内容损失 357
    12.2.8 风格损失 357
    12.2.9 全变分损失 357
    12.2.10 计算内容和风格损失 358
    12.2.11 Evaluator类 359
    12.2.12 生成输出图像 359
    12.2.13 显示图像 360
    12.2.14 项目源码 361
    总结 365

    第13章 图像生成 366
    13.1 GAN(生成对抗网络) 366
    13.2 GAN如何工作 366
    13.3 生成器 367
    13.4 判别器 367
    13.5 数学公式 368
    13.6 数字生成 369
    13.6.1 创建项目 369
    13.6.2 加载数据集 369
    13.6.3 准备数据集 370
    13.6.4 定义生成器模型 370
    13.6.5 测试生成器 372
    13.6.6 定义判别器模型 373
    13.6.7 测试判别器 374
    13.6.8 定义损失函数 375
    13.6.9 定义新训练函数 376
    13.6.10 项目源码 380
    13.7 字母生成 385
    13.7.1 下载数据 385
    13.7.2 创建单字母数据集 385
    13.7.3 输出结果 386
    13.7.4 项目源码 387
    13.8 印刷体到手写体 392
    13.9 生成彩色卡通图像 392
    13.9.1 下载数据集 392
    13.9.2 创建数据集 392
    13.9.3 显示图像 393
    13.9.4 输出结果 394
    13.9.5 项目源码 394
    总结 400

    第14章 图像转换 401
    14.1 自动编码器 401
    14.2 色彩空间 402
    14.3 网络配置 402
    14.3.1 Vanilla模型 403
    14.3.2 Merged模型 403
    14.3.3 使用预训练的Merged模型 403
    14.4 自动编码器 404
    14.4.1 加载数据 405
    14.4.2 创建训练、测试数据集 406
    14.4.3 准备训练数据 406
    14.4.4 定义模型 407
    14.4.5 模型训练 410
    14.4.6 测试 410
    14.4.7 未知图像预测 412
    14.4.8 项目源码 413
    14.5 编码器的预训练模型 418
    14.5.1 项目简介 418
    14.5.2 定义模型 418
    14.5.3 提取特征 418
    14.5.4 定义网络 419
    14.5.5 模型训练 420
    14.5.6 预测 421
    14.5.7 未知图像预测 421
    14.5.8 项目源码 422
    总结 426

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购