返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 大数据分析与实践 社会研究与数字治理 王贵,杨武剑,周苏 编 其它计算机/网络书籍大中专 正版图书籍 机械工业出版社
  • 新商品上架
    • 作者: 无著
    • 出版社: 机械工业出版社
    • 出版时间:2024-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    句字图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 无著
    • 出版社:机械工业出版社
    • 出版时间:2024-01
    • ISBN:9784735790785
    • 版权提供:机械工业出版社

    大数据分析与实践 社会研究与数字治理

    作  者:王贵,杨武剑,周苏 编
    定  价:65
    出 版 社:机械工业出版社
    出版日期:2024年01月01日
    页  数:248
    装  帧:平装
    ISBN:9787111744078

    理论联系实际,有机结合大数据分析理念、技术与应用的学习和实践活动。结合课堂教学方法改革的要求,有针对性地安排了课前导读案例。为大数据分析的学习设计了课程实践。随书配备电子课件、教学大纲、教学进度表、作业参考答案、题库等教学资源。

    出版说明
    前言
    课程教学进度表
    第1章大数据分析基础
    【导读案例】葡萄酒的品质分析
    1.1大数据基础
    1.1.1定义大数据
    1.1.2大数据的3V特征
    1.1.3广义的大数据
    1.2大数据的结构类型
    1.3大数据对分析的影响
    1.3.1大数据的影响
    1.3.2大数据分析的定义
    1.4定性分析与定量分析
    1.5四种数据分析方法
    1.5.1描述性分析
    1.5.2诊断性分析
    1.5.3预测性分析
    1.5.4规范性分析
    1.6大数据分析的行业作用
    1.6.1大数据分析的决策支持价值
    1.6.2大数据分析的关键应用
    1.6.3大数据分析的能力分析
    1.6.4大数据分析面临的问题
    【作业】
    第2章社会研究与方法
    【导读案例】第四范式:大数据对于科研的意义
    2.1社会研究的概念
    2.1.1社会研究的特征
    2.1.2社会研究的理论问题
    2.1.3社会研究的基本方法
    2.2社会研究的主要过程
    2.2.1选题与文献回顾
    2.2.2研究设计
    2.2.3测量与操作化
    2.2.4抽样概念与方法
    2.3调查研究
    2.3.1调查研究概述
    2.3.2调查研究的特点
    2.3.3定量与定性调查
    2.3.4程序与报告
    2.3.5调查问卷设计
    2.4实验研究
    2.4.1实验研究概述
    2.4.2实验研究的分类
    2.5利用文献的定量研究
    2.5.1文献分析概述
    2.5.2文献搜集和积累
    2.5.3文献综述
    2.6实地调查
    2.6.1实地调查概述
    2.6.2实地调查的方法
    【作业】
    第3章计算社会科学及其发展
    【导读案例】大数据时代的
    社会治理之道
    3.1什么是计算社会科学
    3.1.1计算社会学
    3.1.2计算经济学
    3.2社会科学与大数据
    3.2.1大数据推动相关分析崛起
    3.2.2大数据推动学科融合
    3.2.3大数据重构定量与定性研究
    3.2.4大数据优化数据处理
    3.3社会研究的范式变革
    3.3.1大数据带来的变革因素
    3.3.2路径变革:“数据驱动”知识发现
    3.3.3手段变革:大数据服务于因果分析
    3.3.4功能变革:分析与预测统一于政策
    3.4计算社会学发展
    3.4.1计算社会学的发展历程
    3.4.2计算社会学发展的五大内容
    3.4.3计算社会学发展的思考
    【作业】
    第4章基本原则与生命周期
    【导读案例】得数据者得天下
    4.1大数据分析生命周期
    4.1.1商业案例评估
    4.1.2数据标识
    4.1.3数据获取与过滤
    4.1.4数据转换
    4.1.5数据验证与清洗
    4.1.6数据聚合与表示
    4.1.7数据分析
    4.1.8数据可视化
    4.1.9分析结果的使用
    4.2大数据的分析原则
    4.2.1原则1:实现商业价值和影响
    4.2.2原则2:专注于最后一公里
    4.2.3原则3:持续改善
    4.2.4原则4:加速学习能力和执行力
    4.2.5原则5:差异化分析
    4.2.6原则6:嵌入分析
    4.2.7原则7:建立分析架构
    4.2.8原则8:构建人力因素
    4.2.9原则9:利用消费化趋势
    【作业】
    第5章构建分析路线与用例
    【导读案例】大数据时代,看透
    “假数据”
    5.1什么是分析路线
    5.1.1商业竞争3.0时代
    5.1.2创建独特的分析路线
    5.2大数据分析路线
    5.2.1第1步:确定关键业务目标
    5.2.2第2步:定义价值链
    5.2.3第3步:头脑风暴分析解决方案机会
    5.2.4第4步:描述分析解决方案机会
    5.2.5第5步:创建决策模型
    5.2.6第6步:评估分析解决方案机会
    5.2.7第7步:建立分析路线图
    5.2.8第8步:不断演进分析路线图
    5.3关键用例分析
    5.3.1预测用例
    5.3.2解释用例
    5.3.3预报用例
    5.3.4发现用例
    5.3.5模拟用例
    5.3.6优化用例
    【作业】
    第6章大数据分析的运用
    【导读案例】数据驱动≠大数据
    6.1企业分析的分类
    6.2战略分析
    6.2.1专案分析
    6.2.2战略市场细分
    6.2.3经济预测
    6.2.4业务模拟
    6.3管理分析
    6.4运营分析
    6.5科学分析
    6.6面向客户的分析
    6.6.1预测服务
    6.6.2分析应用
    6.6.3消费分析
    6.6.4案例:大数据促进商业决策
    【作业】
    第7章预测分析方法
    【导读案例】准确预测地震
    7.1预测分析方法论
    7.1.1数据具有内在预测性
    7.1.2预测分析的流程
    7.2定义业务需求
    7.2.1理解业务问题
    7.2.2定义应对措施
    7.2.3了解误差成本
    7.2.4确定预测窗口
    7.2.5评估部署环境
    7.3建立分析数据集
    7.3.1配置数据
    7.3.2评估数据
    7.3.3调查异常值
    7.3.4数据转换
    7.3.5执行基本表操作
    7.3.6处理丢失数据
    7.4降维与特征工程
    7.4.1降维
    7.4.2特征工程
    7.4.3特征变换
    7.5建立预测模型
    7.5.1制订建模计划
    7.5.2细分数据集
    7.5.3执行模型训练计划
    7.5.4测量模型效果
    7.5.5验证模型
    7.6部署预测模型
    7.6.1审查和批准预测模型
    7.6.2执行模型评分
    7.6.3评价模型效果
    7.6.4管理模型资产
    【作业】
    第8章预测分析技术
    【导读案例】中小企业的“深层竞争力”
    8.1统计分析
    8.2监督和无监督学习
    8.2.1监督学习
    8.2.2无监督学习
    8.2.3监督和无监督学习的区别
    8.3机器学习
    8.3.1机器学习的思路
    8.3.2异常检测
    8.3.3过滤
    8.3.4贝叶斯网络
    8.3.5文本挖掘
    8.4神经网络与深度学习
    8.4.1人工神经网络
    8.4.2深度学习
    8.5语义分析
    8.5.1自然语言处理
    8.5.2文本分析
    8.5.3文本处理
    8.5.4语义检索
    8.6视觉分析
    8.6.1热点图
    8.6.2空间数据图
    【作业】
    第9章大数据分析模型
    【导读案例】行业人士必知的十大数据思维原理
    9.1什么是分析模型
    9.2回归分析模型
    9.3关联分析模型
    9.3.1关联规则分析
    9.3.2相关分析
    9.4分类分析模型
    9.4.1判别分析的原理和方法
    9.4.2基于机器学习的分类模型
    9.4.3支持向量机
    9.4.4逻辑回归
    9.4.5决策树
    9.4.6k近邻
    9.4.7随机森林
    9.4.8朴素贝叶斯
    9.5聚类分析模型
    9.5.1聚类问题分析
    9.5.2聚类分析的分类
    9.5.3聚类分析方法
    9.5.4聚类分析的应用
    9.6结构分析模型
    9.6.1典型的结构分析方法
    9.6.2社团发现
    9.7文本分析模型
    【作业】
    第10章用户角色与分析工具
    【导读案例】包罗一切的数字图书馆
    10.1用户角色
    10.1.1超级分析师
    10.1.2数据科学家
    10.1.3业务分析师
    10.1.4分析使用者
    10.2分析的成功因素
    10.3分析编程语言
    10.3.1R语言
    10.3.2SAS编程语言
    10.3.3SQL
    10.4业务用户工具
    10.4.1BI的常用技术
    10.4.2BI工具和方法的发展历程
    10.4.3新的分析工具与方法
    【作业】
    第11章大数据分析平台
    【导读案例】大数据分析的数据源
    11.1分布式分析
    11.1.1关于并行计算
    11.1.2并行计算的三种形式
    11.1.3数据并行与“正交”
    11.1.4分布式的软件环境
    11.2预测分析架构
    11.2.1独立分析
    11.2.2部分集成分析
    11.2.3基于数据库的分析
    11.2.4基于Hadoop分析
    11.3云计算中的分析
    11.3.1公有云和私有云
    11.3.2安全和数据移动
    11.4现代SQL平台
    11.4.1现代SQL平台
    11.4.2现代SQL平台区别于传统SQL平台
    11.4.3MPP数据库
    11.4.4SQL-on-Hadoop
    11.4.5NewSQL数据库
    11.4.6现代SQL平台的发展
    【作业】
    第12章社交网络与推荐系统
    【导读案例】推荐系统的工程实现(节选)
    12.1社交网络的定义
    12.1.1社交网络的特点
    12.1.2社交网络度量
    12.1.3社交网络学习
    12.2社交网络的结构
    12.2.1社交网络的统计学构成
    12.2.2社交网络的群体形成
    12.2.3图与网络分析
    12.3社交网络的关联分析
    12.4推荐系统
    12.4.1推荐系统的概念
    12.4.2推荐方法的组合
    12.4.3推荐系统的评价
    12.5协同过滤
    【作业】
    第13章组织分析团队
    【导读案例】数据工作者的数据之路:从洞察到行动
    13.1企业的分析文化
    13.1.1管理分析团队的有效因素
    13.1.2繁荣分析的文化共性
    13.2数据科学家(数据工作者)
    13.2.1数据科学家角色
    13.2.2分析人才的四种角色
    13.2.3数据准备分析专业人员
    13.2.4分析程序员
    13.2.5分析经理
    13.2.6分析通才
    13.2.7吸引数据科学家
    13.3集中式与分散式分析团队
    13.4组织分析团队
    13.4.1卓越中心
    13.4.2首席数据官与首席分析官
    13.4.3实验室团队
    13.4.4数据科学技能自我评估
    13.5走起,大数据分析
    【作业】
    第14章基于大数据集市的课程实践
    14.1什么是大数据集市
    14.1.1数据集市的结构
    14.1.2数据集市的类型
    14.1.3区别于数据仓库
    14.2大数据分析实践项目选择
    14.2.1大数据帮零售企业制定促销策略
    14.2.2电信公司通过大数据分析挽回核心客户
    14.2.3大数据帮能源企业设置发电机地点
    14.2.4电商企业通过大数据制定销售战略
    14.3案例分析与课程实践要求
    14.3.1角色选择
    14.3.2项目选择
    14.3.3实践项目的背景说明
    14.3.4分知识点要点简述
    14.3.5撰写大数据分析报告
    14.3.6课程实践总结
    14.3.7课程实践的教师评价
    附录课程作业参考答案
    参考文献

    内容简介

    “大数据分析”是一门理论性和实践性都很强的课程。本书是为高等院校相关专业“大数据分析”课程而设计编写,具有丰富实践特色的主教材。针对高等院校学生的发展需求,本书系统、全面地介绍了大数据分析的基本知识和技能,详细介绍了大数据分析基础、社会研究与方法、计算社会科学及其发展、基本原则与生命周期、构建分析路线与用例、大数据分析的运用、预测分析方法、预测分析技术、大数据分析模型、用户角色与分析工具、大数据分析平台、社交网络与推荐系统、组织分析团队等内容,最后为大数据分析的学习设计了一个基于大数据集市的课程实践。全书具有较强的系统性、可读性和实用性。本书适合作为高等院校相关专业“大数据分析”课程的教材,也可供有一定实践经验的社会研究人员、IT应用人员、管理人员参考和作为继续教育的教材。

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购