返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • [正版新书] 这才是 BI 该做的事 : 数据驱动从 0 到 1 都美香 清华大学出版社 数据分析,商业智能
  • 新商品上架
    • 作者: 都美香著
    • 出版社: 清华大学出版社
    • 出版时间:2024-03
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    句字图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 都美香著
    • 出版社:清华大学出版社
    • 出版时间:2024-03
    • 开本:16开
    • ISBN:9781978458735
    • 版权提供:清华大学出版社

     书名:  这才是 BI 该做的事 : 数据驱动从 0 到 1 
     出版社:  清华大学出版社
     出版日期  2024
     ISBN号:  9787302657101

    本书以 BI 负责人的视角介绍 BI 分析师的核心工作和应具备的核心技能,并分析 BI 创造价值的专题,理论和实例并重。全书分为四部分: 

    第一部分(第 1、2 章)为 BI 概述与团队组建,从介绍 BI 分析的基本概念说起,包含BI 职责与数据驱动的概述,以及组建团队时需要考虑的能力模 型、团队选型、团队管理。第二部分(第 3、4 章)为 BI 体系搭建基础知识,包括数据获取与管理,指标体系的概念、设计模型与使用场景。第三部分(第 5 ~ 9 章)为 BI 创造价值专题,包括增长、价值主张、盈利、体验、风控五大专题。第四部分(第 10、11 章)为回顾与展望,从衣、食、住、行、学五个方面回顾数据已经带来的变化与未来可预期的变化,最后从进化的视角探讨应对人工智能范式转移的策略。 

    对于想要通过数据驱动业务、改善决策质量的互联网从业者来说,本书应该是一本非常实用的参考书。



    正在攻读杜克大学跨学科数据科学硕士(MIDS)项目,拥有中国人民大学历史专业本科学位。曾在滴滴担任国家决策支持部负责人,兼任日本、巴西外卖分析团队负责人;火花思维商业智能部负责人;VIPKID高级数据分析经理;华为担任高级工程师。带领团队在零售、教育、外卖等领域实现数据驱动,在供给侧与需求侧、互联网与传统企业、国内和国际业务领域都积累了丰富的实战经验。

    深入阐述BI团队应发挥的核心价值;

    全书贯穿电商、教育、外卖领域的实操案例;

    剖析BI指标体系的设计模型与使用场景;

    五大专题详述BI如何创造业务价值;



    目录 

    第一部分? BI 概述与团队组建 

    第 1 章? BI 分析概述? /? 2 

    1.1 从“分析”的概念说起 / 3 

    1.1.1 常见的分析概念 / 3 

    1.1.2 BI 分析的概念 / 8 

    1.2 BI 分析行业现状与 BI 的职责 / 9 

    1.2.1 没有什么不在被数字化 / 9 

    1.2.2 我们相信上帝,但其他人必须提供数据 / 14 

    1.2.3 BI 团队的职责 / 15 

    1.2.4 BI 团队的常见分类 / 16 

    1.3 数据驱动概述 / 17 

    1.3.1 数据驱动业务的衡量维度 / 17 

    1.3.2 数据驱动业务的大体流程 / 19 

    第 2 章? 组建 BI 团队? /? 22 

    2.1 “人”:数据分析师画像 / 23 

    2.1.1 分析师通用能力 / 23 

    2.1.2 不同部门对应的 BI 分析师特征 / 24 

    2.1.3 不同任务属性对应的 BI 分析师特征 / 25 

    2.2 BI 团队的架构设置与部门间协作 / 27 

    2.2.1 BI 团队外部架构 / 27 

    2.2.2 BI 跨部门协作机制 / 29 

    2.3 团队管理 / 32 

    2.3.1 团队选型 / 32 

    2.3.2 团队运作机制 / 36 

    第二部分? BI 体系搭建基础知识 

    第 3 章? 数据获取与管理? /? 40 

    3.1 数据采集(以外卖业务为例) / 41 

    3.1.1 数据源类型 / 41 

    3.1.2 数据源的信息结构 / 44 

    3.1.3 数据传输与存储 / 46 

    3.2 数据质量管理 / 49 

    3.2.1 数据质量标准 / 49 

    3.2.2 数据质量治理 / 50 

    3.3 新型数据源 / 52 

    3.3.1 关注传感器的数据 / 52 

    3.3.2 音频、视频等非结构化数据的解析与应用 / 53 

    3.3.3 标注数据 / 55 

    第 4 章? 搭建指标体系? /? 57 

    4.1 指标体系的概念、作用和衡量标准 / 58 

    4.1.1 指标体系的概念 / 58 

    4.1.2 指标体系的作用 / 60 

    4.1.3 指标体系的衡量标准(以外卖场景为例) / 64 

    4.2 指标体系的设计模型 / 66 

    4.2.1 第一关键指标法(以电商和在线教育为例) / 67 

    4.2.2 OSM 模型(以在线教育为例) / 69 

    4.2.3 AARRR 海盗指标法(以在线教育为例) / 73 

    4.2.4 用户旅程地图模型(以电商为例) / 75 

    4.3 指标体系的开发流程 / 78 

    4.4 指标体系的使用场景(以外卖业务为例) / 78 

    4.4.1 日维度业务监控 / 78 

    4.4.2 周维度业务诊断 / 80 

    4.4.3 月维度业务复盘 / 82 

    4.4.4 支持日常业务决策 / 84 

    第三部分? BI 创造价值专题 

    第 5 章? 专题:增长? /? 88 

    5.1 概念 / 89 

    5.1.1 增长黑客的概念 / 89 

    5.1.2 增长金字塔:找到市场契合点和价值投递引擎 / 90 

    5.1.3 增长黑客的运营机制 / 92 

    5.2 数据科学的演绎 / 95 

    5.2.1 人工智能的高光时刻 / 95 

    5.2.2 提炼算法替代决策的机会点 / 96 

    5.2.3 2% 的人通过机器控制 98% 的人 / 97 

    5.2.4 提问题的能力才是核心能力 / 99 

    5.3 数据驱动增长的案例(以在线教育为例) / 101 

    5.3.1 获客:注册 / 102 

    5.3.2 激活:转化 / 103 

    5.3.3 留存:退费 / 104 

    5.3.4 盈利:续费 / 105 

    5.3.5 传播:转介绍 / 107 

    5.3.6 附:增长分析中常用的算法模型 / 108 

    第 6 章? 专题:价值主张? /? 110 

    6.1 实现价值主张的分析方法 / 111 

    6.1.1 第一性原理:抓住本质 / 111 

    6.1.2 爬楼梯策略:穷尽方法 / 113 

    6.2 数据驱动价值主张的实现(以在线教育为例) / 115 

    6.2.1 提高运营效率 / 115 

    6.2.2 提高学习效果 / 118 

    6.3 数据驱动价值主张的实现(以外卖业务为例) / 122 

    6.3.1 外卖平台的出现是社会的进步 / 122 

    6.3.2 多、快、好、省 / 123 

    第 7 章? 专题:盈利? /? 130 

    7.1 盈利能力分析 / 132 

    7.1.1 传统的盈利能力分析:赚更多钱 / 132 

    7.1.2 新业务的盈利能力分析:赚 1 块钱 / 133 

    7.2 制定业务目标 / 135 

    7.2.1 制定目标的“格栅思维” / 135 

    7.2.2 目标预测的模型类型 / 136 

    7.2.3 制定目标的决策体系:格栅模型 / 143 

    7.2.4 目标管理的长远意义:锻造持续成功的团队 / 145 

    7.3 增长结构优化 / 146 

    7.3.1 增长引擎的类型 / 146 

    7.3.2 数据驱动增长引擎(以在线教育业务为例) / 147 

    7.4 单位经济效益优化:毛利分析 / 150 

    7.4.1 确定毛利目标(以外卖业务为例) / 150 

    7.4.2 优化毛利结构(以外卖业务为例) / 152 

    第 8 章? 专题:体验? /? 157 

    8.1 用户体验概述 / 158 

    8.1.1 概念 / 158 

    8.1.2 度量模型 / 158 

    8.1.3 用户体验分析方法 / 161 

    8.2 用户体验分析应用 / 162 

    8.2.1 搭建体验指标体系(以外卖业务为例) / 162 

    8.2.2 问卷调研 / 163 

    8.2.3 KANO 模型 / 166 

    8.2.4 文本挖掘 / 168 

    8.2.5 关联用户行为与评价、调研 / 170 

    第 9 章? 专题:风控? /? 172 

    9.1 概述 / 174 

    9.1.1 风控的概念 / 174 

    9.1.2 风控的特征 / 174 

    9.1.3 风控不利可能造成的影响 / 176 

    9.2 风险感知(以外卖业务为例) / 177 

    9.2.1 扫描业务流程与策略,锁定风控点 / 177 

    9.2.2 异常值分析与离群点监测 / 179 

    9.2.3 客服数据监测 / 180 

    9.3 风险分析(以外卖业务为例) / 181 

    9.3.1 描述性分析 / 181 

    9.3.2 根本原因分析 / 183 

    9.3.3 共同因素分析 / 184 

    9.4 风险治理 / 186 

    9.4.1 治理的环节 / 186 

    9.4.2 治理的策略 / 187 

    第四部分? 回顾与展望 

    第 10 章? 数据驱动随处可见? /? 190 

    10.1 衣 / 191 

    10.1.1 SHEIN 是什么 / 191 

    10.1.2 SHEIN 的数据驱动的运营机制 / 192 

    10.2 食 / 196 

    10.2.1 编辑基因—获得更好的西红柿种子 / 196 

    10.2.2 数据驱动,提高种植效率 / 197 

    10.2.3 数据驱动,提高交易效率 / 199 

    10.2.4 数据驱动,提炼市场信号 / 200 

    10.3 住 / 201 

    10.3.1 比尔·盖茨的未来之家 / 201 

    10.3.2 交互:基于语言交互的智能音响 / 202 

    10.3.3 领会意图:环境计算 / 203 

    10.4 行 / 205 

    10.4.1 拥有不出行的选择:在线生活和工作 / 205 

    10.4.2 提高出行效率:网约车平台 / 206 

    10.4.3 智慧交通:单车智能、车路协同 / 208 

    10.5 学 / 209 

    10.5.1 搜索信息 / 209 

    10.5.2 在线教育 / 211 

    10.5.3 人工智能与教育 / 212 

    第 11 章? 数量与质量:结合人工智能的竞争优势? /? 216 

    11.1 科学 / 217 

    11.2 还原 / 218 

    11.3 变异 / 219 

    11.4 概率 / 220 

    11.5 涌现 / 221 

    11.5.1 层创进化 / 221 

    11.5.2 吸引与排斥 / 222 

    11.5.3 元素与网络 / 223 

    11.6 智能 / 225 

    11.6.1 人类和果蝇有什么差别 / 225 

    11.6.2 人类和黑猩猩有什么差别 / 225 

    11.6.3 人和机器有什么差别 / 226 

    11.6.4 结合人工智能的竞争策略 / 226




     

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购