由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
[正版新书]强化学习的数学原理(英文版) 赵世钰 清华大学出版社 强化学习
¥ ×1
书名: | 强化学习的数学原理(英文版) |
出版社: | 清华大学出版社 |
出版日期 | 2024 |
ISBN号: | 9787302658528 |
本书从强化学习最基本的概念开始介绍, 将介绍基础的分析工具, 包括贝尔曼公式和贝尔曼最 优公式, 然后推广到基于模型的和无模型的强化学习算法, 最后推广到基于函数逼近的强化学习方 法。本书强调从数学的角度引入概念、分析问题、分析算法, 并不强调算法的编程实现。本书不要求 读者具备任何关于强化学习的知识背景, 仅要求读者具备一定的概率论和线性代数的知识。如果读者 已经具备强化学习的学习基础, 本书可以帮助读者更深入地理解一些问题并提供新的视角。 本书面向对强化学习感兴趣的本科生、研究生、研究人员和企业或研究所的从业者。
|
|
|
·从零开始到透彻理解,知其然并知其所以然; ·本书在GitHub收获2000+星; ·课程视频全网播放超过80万; ·国内外读者反馈口碑爆棚; ·教材、视频、课件三位一体。
|
|
Contents
Overview of this Book 1 Chapter 1 Basic Concepts 6 1.1 A grid world example 7 1.2 State and action 8 1.3 State transition 9 1.4 Policy 11 1.5 Reward 13 1.6 Trajectories, returns, and episodes 15 1.7 Markov decision processes 18 1.8 Summary 20 1.9 Q&A 20 Chapter 2 State Values and the Bellman Equation 21 2.1 Motivating example 1: Why are returns important? 23 2.2 Motivating example 2: How to calculate returns? 24 2.3 State values 26 2.4 The Bellman equation 27 2.5 Examples for illustrating the Bellman equation 30 2.6 Matrix-vector form of the Bellman equation 33 2.7 Solving state values from the Bellman equation 35 2.7.1 Closed-form solution 35 2.7.2 Iterative solution 35 2.7.3 Illustrative examples 36 2.8 From state value to action value 38 2.8.1 Illustrative examples 39 2.8.2 The Bellman equation in terms of action values 40 2.9 Summary 41 2.10 Q&A 42 Chapter 3 Optimal State Values and the Bellman Optimality Equation 43 3.1 Motivating example: How to improve policies? 45 3.2 Optimal state values and optimal policies 46 3.3 The Bellman optimality equation 47 3.3.1 Maximization of the right-hand side of the BOE 48 3.3.2 Matrix-vector form of the BOE 49 3.3.3 Contraction mapping theorem 50 3.3.4 Contraction property of the right-hand side of the BOE 53 3.4 Solving an optimal policy from the BOE 55 3.5 Factors that influence optimal policies 58 3.6 Summary 63 3.7 Q&A 63 Chapter 4 Value Iteration and Policy Iteration 66 4.1 Value iteration 68 4.1.1 Elementwise form and implementation 68 4.1.2 Illustrative examples 70 4.2 Policy iteration 72 4.2.1 Algorithm analysis 73 4.2.2 Elementwise form and implementation 76 4.2.3 Illustrative examples 77 4.3 Truncated policy iteration 81 4.3.1 Comparing value iteration and policy iteration 81 4.3.2 Truncated policy iteration algorithm 83 4.4 Summary 85 4.5 Q&A 86 Chapter 5 Monte Carlo Methods 89 5.1 Motivating example: Mean estimation 91 5.2 MC Basic: The simplest MC-based algorithm 93 5.2.1 Converting policy iteration to be model-free 93 5.2.2 The MC Basic algorithm 94 5.2.3 Illustrative examples 96 5.3 MC Exploring Starts 99 5.3.1 Utilizing samples more efficiently 100 5.3.2 Updating policies more efficiently 101 5.3.3 Algorithm description 101 5.4 MC -Greedy: Learning without exploring starts 102 5.4.1 -greedy policies 103 5.4.2 Algorithm description 103 5.4.3 Illustrative examples 105 5.5 Exploration and exploitation of -greedy policies 106 5.6 Summary 111 5.7 Q&A 111 Chapter 6 Stochastic Approximation 114 6.1 Motivating example: Mean estimation 116 6.2 Robbins-Monro algorithm 117 6.2.1 Convergence properties 119 6.2.2 Application to mean estimation 123 6.3 Dvoretzky's convergence theorem 124 6.3.1 Proof of Dvoretzky's theorem 125 6.3.2 Application to mean estimation. 126 6.3.3 Application to the Robbins-Monro theorem 127 6.3.4 An extension of Dvoretzky's theorem 127 6.4 Stochastic gradient descent 128 6.4.1 Application to mean estimation 130 6.4.2 Convergence pattern of SGD 131 6.4.3 A deterministic formulation of SGD 133 6.4.4 BGD, SGD, and mini-batch GD 134 6.4.5 Convergence of SGD 136 6.5 Summary 138 6.6 Q&A 138 Chapter 7 Temporal-Difference Methods 140 7.1 TD learning of state values 142 7.1.1 Algorithm description 142 7.1.2 Property analysis 144 7.1.3 Convergence analysis 146 7.2 TD learning of action values: Sarsa 149 7.2.1 Algorithm description 149 7.2.2 Optimal policy learning via Sarsa 151 7.3 TD learning of action values: n-step Sarsa 154 7.4 TD learning of optimal action values: Q-learning 156 7.4.1 Algorithm description 156 7.4.2 Off-policy vs. on-policy 158 7.4.3 Implementation 160 7.4.4 Illustrative examples 161 7.5 A unified viewpoint 165 7.6 Summary 165 7.7 Q&A 166 Chapter 8 Value Function Approximation 168 8.1 Value representation: From table to function 170 8.2 TD learning of state values with function approximation 174 8.2.1 Objective function 174 8.2.2 Optimization algorithms 180 8.2.3 Selection of function approximators 182 8.2.4 Illustrative examples 183 8.2.5 Theoretical analysis 187 8.3 TD learning of action values with function approximation 198 8.3.1 Sarsa with function approximation 198 8.3.2 Q-learning with function approximation 200 8.4 Deep Q-learning 201 8.4.1 Algorithm description 202 8.4.2 Illustrative examples 204 8.5 Summary 207 8.6 Q&A 207 Chapter 9 Policy Gradient Methods 211 9.1 Policy representation: From table to function 213 9.2 Metrics for defining optimal policies 214 9.3 Gradients of the metrics 219 9.3.1 Derivation of the gradients in the discounted case 221 9.3.2 Derivation of the gradients in the undiscounted case 226 9.4 Monte Carlo policy gradient (REINFORCE) 232 9.5 Summary 235 9.6 Q&A 235 Chapter 10 Actor-Critic Methods 237 10.1 The simplest actor-critic algorithm (QAC) 239 10.2 Advantage actor-critic (A2C) 240 10.2.1 Baseline invariance 240 10.2.2 Algorithm description 243 10.3 Off-policy actor-critic 244 10.3.1 Importance sampling 245 10.3.2 The off-policy policy gradient theorem 247 10.3.3 Algorithm description 249 10.4 Deterministic actor-critic 251 10.4.1 The deterministic policy gradient theorem 251 10.4.2 Algorithm description 258 10.5 Summary 259 10.6 Q&A 260 Appendix A Preliminaries for Probability Theory 262 Appendix B Measure-Theoretic Probability Theory 268 Appendix C Convergence of Sequences 276 C.1 Convergence of deterministic sequences 277 C.2 Convergence of stochastic sequences 280 Appendix D Preliminaries for Gradient Descent 284 Bibliography 290 Symbols 297 Index 299
|
|
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格