返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • [正版] 机器学习实战 基于Scikit-Learn Keras和TensorFlow 原书第2版 奥雷利安 深度学
  • 前谷歌工程师撰写,Keras之父审校并推荐
    • 作者: 奥雷利安·杰龙著
    • 出版社: 机械工业出版社
    • 出版时间:2020-09
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    粉象优品图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 奥雷利安·杰龙著
    • 出版社:机械工业出版社
    • 出版时间:2020-09
    • 开本:16开
    • ISBN:9783617761007
    • 版权提供:机械工业出版社

                                                                                                  店铺公告

    本店存在书、古旧书、收藏书、二手书等特殊商品,因受采购成本限制,可能高于定价销售,明码标价,介意者勿拍!

    1.书籍因稀缺可能导致售价高于定价,图书实际定价参见下方详情内基本信息,请买家看清楚且明确后再拍,避免价格争议!

    2.店铺无纸质均开具电子,请联系客服开具电子版

    1)“美亚”人工智能图书畅销榜首图书,基于TensorFlow 2和新版Scikit-Learn全面升级;

    2)Keras之父和TensorFlow移动端负责人鼎力推荐;

    3)从实践出发,通过具体的示例、较少的理论和可用于生产环境的Python框架来帮助你直观地理解并掌握构建智能系统所需要的概念和工具;

    4)可读性强。每章都附有练习题和代码,可以帮助你应用所学的知识。

      商品基本信息


    商品名称:

      机器学习实战:基于Scikit-Learn、Keras和TensorFlow(原书第2版)

    作     者:

      奥雷利安·杰龙(Aurélien Géron)

    市 场 价:

      149.00元

    ISBN  号:

      9787111665977

    出版日期:

      2020-09

    页     数:

      692

    字     数:

      250千字

    出 版 社:

      机械工业出版社

      目录

    前言1

    第一部分 机器学习的基础知识11

    第1章 机器学习概览13

    1.1 什么是机器学习14

    1.2 为什么使用机器学习14

    1.3 机器学习的应用示例16

    1.4 机器学习系统的类型18

    1.5 机器学习的主要挑战32

    1.6 测试与验证38

    1.7 练习题40

    第2章 端到端的机器学习项目42

    2.1 使用真实数据42

    2.2 观察大局44

    2.3 获取数据48

    2.4 从数据探索和可视化中获得洞见60

    2.5 机器学习算法的数据准备66

    2.6 选择和训练模型74

    2.7 微调模型77

    2.8 启动、监控和维护你的系统82

    2.9 试试看84

    2.10 练习题84

    第3章 分类86

    3.1 MNIST86

    3.2 训练二元分类器88

    3.3 性能测量89

    3.4 多类分类器99

    3.5 误差分析101

    3.6 多标签分类104

    3.7 多输出分类105

    3.8 练习题107

    第4章 训练模型108

    4.1 线性回归109

    4.2 梯度下降113

    4.3 多项式回归122

    4.4 学习曲线124

    4.5 正则化线性模型127

    4.6 逻辑回归134

    4.7 练习题141

    第5章 支持向量机143

    5.1 线性SVM分类143

    5.2 非线性SVM分类146

    5.3 SVM回归151

    5.4 工作原理152

    5.5 练习题160

    第6章 决策树162

    6.1 训练和可视化决策树162

    6.2 做出预测163

    6.3 估计类概率165

    6.4 CART训练算法166

    6.5 计算复杂度166

    6.6 基尼不纯度或熵167

    6.7 正则化超参数167

    6.8 回归168

    6.9 不稳定性170

    6.10 练习题172

    第7章 集成学习和随机森林173

    7.1 投票分类器173

    7.2 bagging和pasting176

    7.3 随机补丁和随机子空间179

    7.4 随机森林180

    7.5 提升法182

    7.6 堆叠法190

    7.7 练习题192

    第8章 降维193

    8.1 维度的诅咒194

    8.2 降维的主要方法195

    8.3 PCA198

    8.4 内核PCA204

    8.5 LLE206

    8.6 其他降维技术208

    8.7 练习题209

    第9章 无监督学习技术211

    9.1 聚类212

    9.2 高斯混合模型232

    9.3 练习题245

    第二部分 神经网络与深度学习247

    第10章 Keras人工神经网络简介249

    10.1 从生物神经元到人工神经元250

    10.2 使用Keras实现MLP262

    10.3 微调神经网络超参数284

    10.4 练习题290

    第11章 训练深度神经网络293

    11.1 梯度消失与梯度爆炸问题293

    11.2 重用预训练层305

    11.3 更快的优化器310

    11.4 通过正则化避免过拟合321

    11.5 总结和实用指南327

    11.6 练习题329

    第12章 使用TensorFlow自定义模型和训练330

    12.1 TensorFlow快速浏览330

    12.2 像NumPy一样使用TensorFlow333

    12.3 定制模型和训练算法338

    12.4 TensorFlow函数和图356

    12.5 练习题360

    第13章 使用TensorFlow加载和预处理数据362

    13.1 数据API363

    13.2 TFRecord格式372

    13.3 预处理输入特征377

    13.4 TF Transform385

    13.5 TensorFlow数据集项目386

    13.6 练习题388

    第14章 使用卷积神经网络的深度计算机视觉390

    14.1 视觉皮层的架构390

    14.2 卷积层392

    14.3 池化层399

    14.4 CNN架构402

    14.5 使用Keras实现ResNet-34 CNN416

    14.6 使用Keras的预训练模型417

    14.7 迁移学习的预训练模型418

    14.8 分类和定位421

    14.9 物体检测422

    14.10 语义分割428

    14.11 练习题431

    第15章 使用RNN和CNN处理序列432

    15.1 循环神经元和层432

    15.2 训练RNN436

    15.3 预测时间序列437

    15.4 处理长序列444

    15.5 练习题453

    第16章 使用RNN和注意力机制进行自然语言处理455

    16.1 使用字符RNN生成莎士比亚文本456

    16.2 情感分析464

    16.3 神经机器翻译的编码器-解码器网络470

    16.4 注意力机制476

    16.5 最近语言模型的创新486

    16.6 练习题488

    第17章 使用自动编码器和GAN的表征学习和生成学习489

    17.1 有效的数据表征490

    17.2 使用不完整的线性自动编码器执行PCA491

    17.3 堆叠式自动编码器493

    17.4 卷积自动编码器499

    17.5 循环自动编码器500

    17.6 去噪自动编码器501

    17.7 稀疏自动编码器502

    17.8变分自动编码器505

    17.9 生成式对抗网络510

    17.10 练习题522

    第18章 强化学习523

    18.1 学习优化奖励524

    18.2 策略搜索525

    18.3 OpenAI Gym介绍526

    18.4 神经网络策略529

    18.5 评估动作:信用分配问题531

    18.6 策略梯度532

    18.7 马尔可夫决策过程536

    18.8 时序差分学习540

    18.9 Q学习540

    18.10 实现深度Q学习544

    18.11 深度Q学习的变体547

    18.12 TF-Agents库550

    18.13 一些流行的RL算法概述568

    18.14 练习题569

    第19章 大规模训练和部署TensorFlow模型571

    19.1 为TensorFlow模型提供服务572

    19.2 将模型部署到移动端或嵌入式设备586

    19.3 使用GPU加速计算589

    19.4 跨多个设备的训练模型600

    19.5 练习题613

    19.6 致谢613

    附录A 课后练习题解答614

    附录B 机器学习项目清单642

    附录C SVM对偶问题647

    附录D 自动微分650

    附录E 其他流行的人工神经网络架构656

    附录F 特殊数据结构663

    附录G TensorFlow图669

      内容简介

    本书分为两部分。第壹部分,机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概念;第二部分,神经网络和深度学习,涵盖以下主题:什么是神经网络以及它们有什么用,使用TensorFlow和Keras构建和训练神经网络的技术,以及如何使用强化学习构建可以通过反复试错,学习好的策略的代理程序。第壹部分主要基于Scikit-Learn,而第二部分则使用TensorFlow和Keras。

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购