由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
醉染图书偏微分方程数值解法 第2版9787030337702
¥ ×1
前言
章常微分方程雨点边值问题的差分解法1
1.1Dirichlet边值问题
1.1.1基本辙分不等式2
1.1.2解的先验估计式4
1.2差分格式5
1.2.1差分格式的建立7
1.2.2差分格式解的存在
1..差分格式的求解9
1.2.4差分格式解的先验估计式13
1.2.5差分格式解的收敛和稳定17
1.2.6Richardson外推法19
1.2.7紧差分格式21
1.3导数边界值问题24
1.3.1差分格式的建立24
1.3.2差分格式的求解26
小结与拓展30
习题131
第2章椭圆型方程的差分解法34
2.1Dirichlet边值问题34
2.2五点差分格式36
2.2.1差分格式的建立36
2.2.2差分格式解的存在39
2..差分格式的求解39
2.2.4差分格式解的先验估计式43
2.2.5差分格式解的收敛和稳定45
2.2.6Richardson外推法46
.紧差分格式49
..1差分格式的建立49
..2差分格式解的存在50
..差分格式的求解51
..4差分格式解的先验估计式55
..5差分格式解的收敛和稳定5
2.4导数边界值问题59
2.4.1差分格式的建立59
2.4.2差分格式的求解61
2.5双调和方程边值问题64
小结与拓展65
习题266
第3章抛物型方程的差分解法69
3.1Dirichlet初边值问题69
3.2向前Euler格式71
3.2.1差分格式的建立73
3.2.2差分格式解的存在74
3..差分格式的求解74
3.2.4差分格式解的先验估计式76
3.2.5差分格式解的收敛和稳定7
3.3向后Euler格式80
3.3.1差分格式的建立81
3.3.2差分格式解的存在2
3.3.3差分格式的求解83
3.3.4差分格式解的先验估计式86
3.3.5差分格式解的收敛和稳定7
3.4Richardson格式88
3.4.1差分格式的建立88
3.4.2差分格式的求解89
3.4.3差分格式的不稳定90
3.5Crank-Nicolson格式92
3.5.1差分格式的建立92
3.5.2差分格式解的存在93
3.5.3差分格式的求解94
3.5.4差分格式解的先验估计式97
3.5.5差分格式解的收敛和稳定99
3.5.6Richardson外推法100
3.6紧差分格式102
3.6.1差分格式的建立102
3.6.2差分格式解的存在104
3.6.3差分格式的求解106
3.6.4差分格式解的先验估计式108
3.6.5差分格式解的收敛和稳定109
3.7非线抛物方程110
3.7.1向前Euler格式111
3.7.2向后Euler格式117
3.7.3Cr创业-Nioolson格式122
3.8导数边界值问题130
小结与拓展132
习题3134
第4章双曲型方程的差分解法143
4.1Dirichlet初边值问题.143
4.2显式差分格式145
4.2.1差分格式的建立145
4.2.2差分格式解的存在14
4..差分格式的求解148
4.2.4差分格式解的先验估计式151
4.2.5差分格式解的收敛和稳定155
4.3隐式差分格式157
4.3.1差分格式的建立157
4.3.2差分格式解的存在159
4.3.3差分格式的求解162
4.3.4差分格式解的先验估计式163
4.3.5差分格式解的收敛和稳定166
4.4紧差分格式168
小结与拓展171
习题4171
第5章高维方程的交替方向法178
5.1二维抛铀型方程的交替方向隐格式178
5.1.1差分格式的建立179
5.1.2差分格式解的存在11
5.1.3差分格式的求解182
5.1.4差分格式解的先验估计式187
5.1.5差分格式解的收敛和稳定18
5.2二维双曲型方程的交替方向隐格式189
5.2.1差分格式的建立190
5.2.2差分格式解的存在192
5..差分格式的求解193
5.2.4差分格式解的先验估计式198
5.2.5差分格式解的收敛和稳定200
5.3三维抛物型方程的紧交替方向隐格式.202
5.3.1差分格式的建立202
5.3.2差分格式解的存在205
5.3.3差分格式的求解206
5.3.4差分格式解的先验估计式210
5.3.5差分格式解的收敛和稳定
5.4二维双曲型方程的紧交替方向隐格式213
小结与拓展216
习题5216
第6章有限元方法简介220
6.1常微分方程边值问题的有限元解法220
6.1.1变分原理221
6.1.2Ritz-Galerkin方法224
6.1.3有限元方法229
6.2椭圆型方程边值问题的有限元解法
6.2.1变分原理
6.2.2Ritz-Galerkin方法
6..有限元方法243
6.3抛物型方程初边值问题的有限元解法251
小结与拓展254
习题6254
参考文献56
附录A有限Fourier级数257
A.1有限Fourier级数257
A.2两点边值问题差分解的先验估计式260
A.3抛物型方程边值问题差分解的先验估计式262
A.4双曲型方程边值问题差分解的先验估计式264
小结与拓展267
附录BSchrodinger方程的差分方法268
B.1Schrodinger方程及其守恒律268
B.2两层非线差分格式270
B.2.1差分格式的建立270
B.2.2差分格式解的守恒和有界271
B..差分格式解的存在274
B.2.4差分格式的收敛276
B.2.5差分格式的选代解法277
B.3三层线化差分格式279
B.3.1差分格式的建立279
B.3.2差分格式的可解20
B.3.3差分格式解的守恒和有界21
B.3.4差分格式的收敛24
B.4紧差分格式286
B.4.1差分格式的建立286
B.4.2差分格式的可解和收敛28
小结与拓展291
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格