由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
醉染图书智能优化(英文版)9787562550
¥ ×1
Part I The Basics
1 Introduction
1.1 Optimization and Machine Learning
1.2 Optimization Problems
1.2.1 Mathematical Formulation
1.2.2 Continuous Optimization versus Discrete Optimization
1.3 Optimization Algorithms
1.3.1 Deterministic Algorithms and Probabilistic Algorithms
1.3.2 Intelligent Optimization Techniques
2 Fundamentals
2.1 Fitness Landscapes
2.1.1 Solution Space
2.1.2 Objective Space
2.1.3 Neiourhood
2.1.4 Global Optimum
2.1.5 Local Optimum
2.2 Properties of Fitness Landscape
2.2.1 Modality
2.2.2 Ruggedness
2.. Deceptiveness
2.2.4 Neutrality
2.2.5 Separability
2.2.6 Scalability
2.2.7 Domino convergence
2.2.8 Property Control
. Computational Complexity
..1 Complexity Measures
..2 P Versus NP Problem
3 Canonical Optimization Algorithms
3.1 Numerical Optimization Algorithms
3.1.1 Line Search
3.1.2 Steepest Descent Method
3.1.3 Newton Method
3.1.4 Conjugate Gradient Method
3.2 State Space Search
3.2.1 State Space
3.2.2 Uninformed Search
3.. Informed Search
3.3 Single-solution-based Random Search
3.3.1 Hill Climbing
3.3.2 Simulated Annealing
3.3.3 Iterated Local Search
3.3.4 Variable Neiorhood Search
4 Basics of Evolutionary Computation Algorithms
4.1 Introduction
4.1.1 Biological Evolution
4.1.2 Origin of Evolutionary Algorithms
4.1.3 Basic Evolutionary Processes
4.1.4 Developments
4.1.5 Related Resources
4.2 Solution Representation
4.2.1 Binary Representation
4.2.2 Integer Representation
4.. Real-valued Representation
4.2.4 Tree Representation
4.2.5 The Effect of Representation
4.3 Selection
4.3.1 Parents Selection
4.3.2 Survivor Selection
4.3.3 Age-based Replacement
4.3.4 Fitness-based Replacement
4.3.5 Selection Pressure
4.4 Reproduction
4.4.1 Mutation
4.4.2 Recombination
5 Popular Evolutionary Computation Algorithms
5.1 Genetic Algorithms
5.1.1 Basic Principle an Faework
5.1.2 Applications of Genetic Algorithms
5.2 Evolutionary Programming
5.2.1 The Emerging of Evolutionary Programming
5.2.2 The Classical Evolutionary Programming
5.. Framework and Parameter Settings
5.2.4 Recent Advances in Evolutionary Programming
5.3 Genetic Programming
5.3.1 Introduction
5.3.2 Genotype-phenotype Mapping
5.3.3 Other Genome Structures
5.3.4 Open Issues
5.4 Particle Swarm Optimization
5.4.1 The Arising of Particle Swarm Optimization
5.4.2 Original Particle Swarm Optimization
5.4.3 Standard Particle Swarm Optimization
5.4.4 Recent Advances in Particle Swarm Optimization
5.5 Differential Evolution
5.5.1 Introduction of Differential Evolution
5.5.2 Framework and Parameter Settings
5.5.3 Some Advances in Differential Evolution
5.6 Evolution Strategy
5.6.1 Basic Evolution Strategy Paradigm
5.6.2 Covariance Matrix Adaptation Evolution Strategy
5.7 Estimation of Distribution Algorithm
5.7.1 Standard Procedures
5.7.2 Discrete Versions
5.7.3 Continuous Versions
5.8 Ant Colony Optimization
5.8.1 Biological Inspiration
5.8.2 ACO framework
5.8.3 ACO Variants
5.8.4 Recent Advances
6 Parameter Control and Policy Control
6.1 Parameter Control
6.1.1 Unary Parameter Control
6.1.2 Multi-parameter Control
6.1.3 Discussions
6.2 Policy Control
6.2.1 Operator Selection Control
6.2.2 Hyper-heuristics
6.. Discussions
7 Exploitation versus Explorat
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格