由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
醉染图书SiC功率器件的封装测试与系统集成9787030657008
¥ ×1
目录
章 绪论 1
1.1 功率器件的应用需求 1
1.2 功率器件的产业链 2
1.3 功率器件的发展历史 3
1.3.1 晶圆的发展 4
1.3.2 芯片的发展 6
1.3.3 封装的发展 8
1.3.4 应用的发展 10
1.4 SiC功率器件及其封装 14
1.4.1 SiC功率器件的能概况 14
1.4.2 SiC器件封装的发展趋势 15
1.5 本章小结 16
参考文献 16
第2章 SiC器件的基本特 19
2.1 SiC器件的基本结构 19
2.1.1 二极管 19
2.1.2 晶体管 20
2.2 SiC器件的静态特 21
. SiC器件的动态特 24
2.4 SiC器件的参数分散 2
2.5 SiC器件的寄生电参数 30
2.6 本章小结 31
参考文献 31
第3章 SiC器件的电学特 33
3.1 SiC器件的驱动特 33
3.1.1 驱动的隔离方式 33
3.1.2 驱动的能要求 34
3.1.3 驱动的调节特 36
3.1.4 驱动的特殊需求 42
3.2 SiC器件的串扰特 44
3.2.1 串扰的产生机理 44
3.2.2 串扰的抑制方法 45
3.3 SiC器件的短路特 46
3.3.1 短路的典型分类 46
3.3.2 短路的动态过程 47
3.3.3 短路的影响规律 48
3.3.4 短路的耐受极限 48
3.3.5 短路的保护方法 51
3.4 本章小结 53
参考文献 54
第4章 SiC器件的热学特 56
4.1 热阻的定义 56
4.1.1 稳态热阻的定义 56
4.1.2 瞬态热阻的定义 57
4.2 热网络的模型 58
4.3 热阻的结果 63
4.4 热阻的测量结果 64
4.5 本章小结 69
参考文献 69
第5章 SiC器件的扩容 71
5.1 SiC器件的并联 71
5.1.1 并联的必要 71
5.1.2 并联的不均流现象 72
5.1.3 不平衡电流的产生机理 73
5.1.4 不平衡电流的抑制方法 78
5.2 SiC器件的混合并联 86
5.2.1 混合功率模块 86
5.2.2 混合开关 87
5.3 SiC器件的串联 88
5.4 SiC器件的级联 89
5.5 本章小结 91
参考文献 91
第6章 功率器件的封装结构和封装工艺 94
6.1 功率器件的封装结构 94
6.1.1 功率器件封装的发展历程 94
6.1.2 功率器件封装的典型结构 95
6.1.3 功率器件封装的材料属 96
6.2 功率模块的封装工艺 97
6.2.1 材料清洗与芯片分组 97
6.2.2 DBC制作 98
6.. 焊接 99
6.2.4 引线键合 101
6.2.5 基板 103
6.2.6 外壳 104
6.2.7 填充剂 104
6.3 功率模块封装的技术现状 105
6.4 功率模块封装的改进技术 107
6.4.1 P-Cell和N-Cell技术 107
6.4.2 磁场相消技术 108
6.4.3 双端技术 109
6.4.4 宽母排技术 110
6.4.5 双面散热技术 110
6.4.6 3D封装技术 110
6.4.7 压接封装技术 111
6.5 本章小结 112
参考文献 112
第7章 功率模块封装的多物理场建模与有限元 115
7.1 电磁场模型 115
7.1.1 累加法 115
7.1.2 相消法 116
7.1.3 方法对比 118
7.2 电-热-力多物理场模型 119
7.2.1 电-热模型 119
7.2.2 热-力模型 122
7.3 疲劳寿命模型 1
7.3.1 热失配效应 1
7.3.2 热失配导致的蠕变 124
7.3.3 焊料层的疲劳寿命模型 127
7.4 有限元分析实例 127
7.4.1 基于ANSYS 3D的电磁场 127
7.4.2 基于COMSOL的电-热-力协同 130
7.4.3 基于COMSOL的疲劳寿命 136
7.5 本章小结 141
参考文献 142
第8章 功率模块封装的优化设计和失效分析 144
8.1 功率模块封装的多目标优化设计 144
8.1.1 电学能模型 146
8.1.2 热学能模型 148
8.1.3 力学能模型 149
8.1.4 多目标优化模型和求解 154
8.1.5 封装材料对优化结果的影响 157
8.2 功率模块封装的实现和评估 159
8.2.1 半桥功率模块的封装布局 159
8.2.2 半桥功率模块的对比评估 160
8.3 功率模块封装的失效分析 163
8.3.1 瞬间过应力失效 163
8.3.2 期化失效 168
8.4 本章小结 169
参考文献 170
第9章 多芯片功率模块的并联均流 172
9.1 多芯片并联功率模块的不均流现象 172
9.2 DBC布局的等效电路模型 175
9.3 DBC布局的数学模型 178
9.4 并联电流分配的通用模型 182
9.4.1 电流分配的数学模型 182
9.4.2 电流分配的框图模型 183
9.4.3 电流分配的量化模型 184
9.5 实验结果与分析 185
9.5.1 实验平台 185
9.5.2 评估指标 186
9.5.3 实验结果 187
9.6 本章小结 194
参考文献 194
0章 SiC器件的开关测量建模与分析 195
10.1 测量仪器的特点 195
10.1.1 测量通道的影响机理 196
10.1.2 测量仪器的能统计 199
10.2 测量的准确 202
10.2.1 示波器的分散 203
10.2.2 开关损耗测量误差建模 206
10.. 开关损耗测量误差评估 214
10.3 测量的稳定 217
10.3.1 器件和仪器的阻抗模型 219
10.3.2 器件和仪器的耦合模型 228
10.3.3 器件和仪器的交互规律 1
10.3.4 实验结果 4
10.4 本章小结
参考文献
1章 SiC分立器件在直流固态变压器中的应用 241
11.1 直流固态变压器的技术需求 241
11.1.1 直流固态变压器的概况 241
11.1.2 直流固态变压器的工作原理 242
11.1.3 直流固态变压器的结果和实验结果 244
11.2 分立器件的寿命模型 246
11.2.1 器件结构 246
11.2.2 应力分布 247
11.. 寿命模型 248
11.3 直流固态变压器的电-热协同设计 249
11.3.1 损耗计算模型 249
11.3.2 热网络模型 250
11.3.3 热阻结果 253
11.3.4 电-热联合结果 254
11.4 直流固态变压器的寿命评估 256
11.4.1 雨流 256
11.4.2 累积损伤 257
11.4.3 评估结果 258
11.5 本章小结 258
参考文献 259
2章 SiC功率模块在车用电机控制器中的应用 261
12.1 车用电机控制器的技术需求 261
12.1.1 车用电机控制器的概况 261
12.1.2 车用电机控制器的现状 262
12.1.3 车用电机控制器的热管理 264
12.1.4 典型车用电机控制器剖析 266
12.2 功率模块的优化设计 267
12.2.1 功率模块的设计对象 267
12.2.2 功率模块的工作原理和损耗计算 268
12.. 功率模块的多物理场与改进封装 271
1. 母线电容的选择 274
1..1 电容的基本特 274
1..2 电容的优化设计 276
12.4 散热器的设计 278
12.4.1 逆变器的热阻 278
12.4.2 散热器热阻的影响规律 280
12.4.3 逆变器的电-热结果 281
12.5 样机与实验结果 282
12.6 本章小结 284
参考文献 284
曾正,重庆大学电气工程学院副教授,博士生导师。长期从事力电技术方面的研究,研究领域包括新型功率半导体器件封装集成与应用、新能源并网变流器运行控制与稳定等。主持自然科学1项、重点研发计划子课题2项,主持完成各类科技项目8项,出版专著2部,发表120余篇(包括SCI30余篇、ESI高被引1篇、F5000很好1篇),被引1900余次(H影响因子22),授权发明10余项(已转让1项)。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格