由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
醉染图书SAP实用数据科学()9787564188818
¥ ×1
Preface
1. Introduction
Telling Better Stories with Data
A ick Look: Data Science for SAP Professionals
A ick Look: SAP Basics for Data Scientists
Getting Data Out of SAP
Roles and Responsibilities
Summary
2. Data Science for SAP Professionals
Machine Learning
Supervised Machine Learning
Unsupervised Machine Learning
Semi-Supervised Machine Learning
Reinforcement Maclrine Learning
Neural Networks
Summary
3. SAP for Data Scientists
Getting Started with SAP
The ABAP Data Dictionary
Tables
Structures
Data ElemensndDmains
Where-Used
ABAP ickViewer
SE16 Export
OData Services
Core Data Services
Summary
4. Exploratory Data Analysis with R
The Four Phases of EDA
Phase 1: Collecting Our Data
Importing with R
Phase 2: Cleaning Our Data
Null Removal
Binary Indicators
Removing Extraneous Columns
Whitespace
Numbers
Phase 3: Analyzing Our Data
DataExplorer
Discrete Features
Continuous Features
Phase 4: Modeling Our Data
TensorFlow and Keras
Training and Testing Split
Shaping and One-Hot Encoding
Recipes
Preparing Data for the Neural Network
Results
Summary
5. Anomaly Detection with R and Python
Types of Anomalies
Tools in R
AnomalyDetection
Anomalize
Getting the Data
SAP ECC System
SAP NetWeaver Gateway
SL Server
Finding Anomalies
PowerBI and R
PowerBI and Python
Summary
6. Predictive Analytics in R and Python
Predicting Sales in R
Step 1: Identify Data
Step 2: Gather Data
Step 3: Explore Data
Step 4: Model Data
Step 5: Evaluate Model
Predicting Sales in Python
Step 1: Identify Data
Step 2: Gather Data
Step 3: Explore Data
Step 4: Model Data
Step 5: Evaluate Model
Summary
7. Clustering and Segmentation in R
Understanding Clustering and Segmentation
RFM
Pareto Principle
k-Means
k-Medoid
Hierarchical Clustering
Time-Series Clustering
Step 1: Collecting the Data
Step 2: Cleaning the Data
Step 3: Analyzing the Data
Revisiting the Pareto Principle
Finding Optimal Clusters
k-Means Clustering
k-Medoid Clustering
Hierarchical Clustering
Manual RFM
Step 4: Report the Findings
R Markdown Code
R Markdown Knit
Summary
8. Association Rule Mining
Understanding Association Rule Mining
Support
Confidence
Lift
Apriori Algorithm
Oraioalization Overview
Collecting the Data
Cleaning the Data
Analyzing the Data
Fiori
Summary
9. Natural Language Processing with the Google Cloud Natural Language API
Understanding Natural Language Processing
Sentiment Analysis
Translation
Preparing the Cloud API
Collecting the Data
Analyzing the Data
Summary
10. Conclusion
Original Mission
Recap
Chapter 1: Introduction
Chapter 2: Data Science for SAP Professionals
Chapter 3: SAP for Data Scientists
Chapter 4: Exploratory Data Analysis
Chapter 5: Anomaly Detection with R and Python
Chapter 6: Prediction with R
Chapter 7: Clustering and Segmentation in R
Chapter 8: Association Rule Mining
Chapter 9: Natural Language Processing with the Google Cloud Natural
Language API
Tips and Recommendations
Be Creative
Be Practical
Enjoy the Ride
Stay in Touch
Index
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格