返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 醉染图书云原生开发()9787564188801
  • 正版全新
    • 作者: (美)鲍里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇著 | (美)鲍里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇编 | (美)鲍里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇译 | (美)鲍里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇绘
    • 出版社: 东南大学出版社
    • 出版时间:2020-06-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    醉染图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: (美)鲍里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇著| (美)鲍里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇编| (美)鲍里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇译| (美)鲍里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇绘
    • 出版社:东南大学出版社
    • 出版时间:2020-06-01
    • 版次:1
    • 印次:1
    • 字数:284000
    • 页数:213
    • 开本:16开
    • ISBN:9787564188801
    • 版权提供:东南大学出版社
    • 作者:()里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇
    • 著:()里斯·斯科尔,(美)特伦特·斯旺森,(美)彼得·约索维奇
    • 装帧:平装
    • 印次:1
    • 定价:78.00
    • ISBN:9787564188801
    • 出版社:东南大学出版社
    • 开本:16开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2020-06-01
    • 页数:213
    • 外部编号:1202080818
    • 版次:1
    • 成品尺寸:暂无

    Preface

    1.Introduction to Cloud Native

    Distributed Systems

    Fallacies of Distributed Systems

    CAP Theorem

    The Twelve-Factor App

    Availability and Service-Level Agreements

    Summary

    2.Fundamentals

    Containers

    Container Isolation Levels

    Container Orchestration

    Kubernetes Overview

    Kubernetes and Containers

    Serverless Computing

    Functions

    From VMs to Cloud Native

    Lift-and-Shift

    Application Modernization

    Application Optimization

    Microservices

    Benefits of a Microservices Architecture

    Challenges with a Microservices Architecture

    Summary

    3.Designing Cloud Native Applications

    Fundamentals of Cloud Native Applications

    Oraioal Excellence

    Security

    Reliability and Availability

    ScalabiliyndCst

    Cloud Native versus Traditional Architectures

    Functions versus Services

    Function Scenarios

    Considerations for Using Functions

    Coite of Functions and Services

    AP esign and Versioning

    API Backward and Forward Compatibility

    Semantic Versioning

    Service Communication

    Protocols

    Messaging Protocols

    Serialization Considerations

    Idempotency

    Request/Response

    Publisher/Subscriber

    Choosing Between Pub/Sub and Request Response

    Synchronous versus Asynchronous

    Gateways

    Routing

    Aggregation

    Offloading

    Implementing Gateways

    Egress

    Service Mesh

    Example Architecture

    Summary

    4.Working with Data

    Data Storage Systems

    Objects, Files, and Disks

    Databases

    Streams and eues

    Blockchain

    Selecting a Datastore

    Data in Multiple Datastores

    Change Data Capture

    Write Changes as an Event to a Change Log

    Transaction Supervisor

    Compensating Transactions

    Extract, Transform, and Load

    Microservices and Data Lakes

    Client Access to Data

    Restricted Client Tokens (Valet-Key)

    Database Services with Fine-Grained Access Control

    GraphL Data Service

    Fast Scalable Data

    Sharding Data

    Caching Data

    Content Delivery Networks

    Analyzing Data

    Streams

    Batch

    Data Lakes on Object Storage

    Data Lakes and Data Warehouses

    Distributed ery Engines

    Databases on Kubernetes

    Storage Volumes

    StatefulSets

    DaemonSets

    Summary

    5.DevOps

    What s evOps?

    Collaboration

    Automation

    Lean Principles and Processes

    Measurement

    Sharing

    Testing

    Test Doubles

    Test Automation Pyramid

    When to Run Which Types of Tests

    Testing Cadence

    Testing in Production

    Develomn EvironmensndTols

    Development Tools

    Develomn Evironments

    Local Develomn Evironments

    Local Development with a Remote Cluster

    Skaffold Development Workflow

    Remote Cluster Routed to Local Development

    Cloud Develomn Evironments

    C/C

    Source Code Control

    Build Stage (CI)

    Test Stage (CI)

    Deploy Stage (CD)

    Release Stage (CD)

    Post-Release Stage

    Monitoring

    Collecting Metrics

    Observable Services

    Confguration Management

    Single-Environment Variable

    Multiple-Environment Variables

    Adding ConfigMap Data to a Volume

    Storing Secrets

    Deployment Configuration

    Sample C/C Flows

    Summary

    6.Best Practices

    Moving to Cloud Native

    Breaking Up the Monolith for the Right Reasons

    Decouple Simple Services First

    Learn to Operate on a Small Scale

    Use an Anticorruption Layer Pattern

    Use a Strangler Pattern

    Come Up with a Data Migration Strategy

    Rewrite Any Boilerplate Code

    Reconsider Frameworks, Languages, Data Structures, and Datastores

    Retire Code

    Ensuring Resiliency

    Handle Transient Failures with Retries

    Use a Finite Number of Retries

    Use Circuit rers for Nontransient Failures

    Graceful Degradation

    Use a Bulkhead Pattern

    Implement Health Checks and Readiness Checks

    Define CPU and Memory Limits for Your Containers

    Implement Rate Limiting and Throttling

    Ensuring Security

    Treat Security Requirements the Same as Any Other Requirements

    Incorporate Security in Your Designs

    Grant Least-Privileged Access

    Use Separate Accounts/Subscriptions/Tenants

    Securely Store All Secrets

    Obfuscate Data

    Encrypt Data in Transit

    Use Federated Identity Management

    Use Role-Based Access Control

    Isolate Kubernetes Pods

    Working with Data

    Use Managed Databases and Analytics Services

    Use a Datastore That Best Fits Data Requirements

    Keep Data in Multiple Regions or Zones

    Use Data Partitioning and Replication for Scale

    Avoid Overfetching and Chatty I/O

    Dont Put Business Logic in the Database

    Test with Production-like Data

    Handle Transient Failures

    Performance and Scalability

    Design Stateless Services That Scale Out

    Use Platform Autoscaling Features

    Use Caching

    Use Partitioning to Scale Beyond Service Limits

    Functions

    Write Single-Purpose Functions

    Dont Chain Functions

    Keep Functions Light and Simple

    Make Functions Stateless

    Separate Function Entry Point from the Function Logic

    Avoid Long-Running Functions

    Use eues for Cross-Function Communication

    Oraios

    Deployments and Releases Are Separate Activities

    Keep Deployments Small

    C/C Definition Lives with the Component

    Consistent Application Deployment

    Use Zero-Downtime Releases

    Dont Modify Deployed Infrastructure

    Use Containerized Build

    Describe Infrastructure Using Code

    Use Namespaces to Organize Services in Kubernetes

    Isolate the Environments

    Separate Function Source Code

    Correlate Deployments with Commits

    Logging, Monitoring, and Alerting

    Use a Unified Logging System

    Use Correlation s

    Include Context with Log Entries

    Common and Structured Logging Format

    Tag Your Metrics Appropriately

    Avoid Alert Fatigue

    Define and Alert on Key Performance Indicators

    Continuous Testing in Production

    Start with Basic Metrics

    Service Communication

    Design for Backward and Forward Compatibility

    Define Service ContracsThtD Not Leak Internal Details

    Prefer Asynchronous Communication

    Use Efficient Serialization Techniques

    Use eues or Streams to Handle Heavy Loads and Traffic Spikes

    Batch Requests for Efficiency

    Split Up Large Messages

    Containers

    Store Images in a Trusted Registry

    Utilize the Docker Build Cache

    Dont Run Containers in Privileged Mode

    Use Explicit Container Image Tags

    Keep Container Images Small

    Run One Application per Container

    Use Verified Images from Trusted Repositories

    Use Vulnerability Scanning Tools on Images

    Dont Store Data in Containers

    Never Store Secrets or Configuration Inside an Image

    Summary

    7.Portability

    Why Make Applications Portable?

    The Costs of Portability

    Data GraviyndPrtability

    When and How to Implement Portability

    Standardized Interfaces

    Common Services and Features

    Abstractions and Layers

    Managed Services from Other Vendors

    Portability Tooling

    Kubernetes as a Portability Layer

    Summary

    Index

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购