由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
醉染图书积分的方法与技巧9787312040511
¥ ×1
前言
绪论
章不定积分
1.1不定积分中的原函数概念
1.2分项积分法
1.3分部积分法
1.3.1分部积分法的基本公式
1.3.2分部积分的推公式
1.4换元积分法
1.5三角替代法
1.6欧拉替换法
1.7三角函数积分中的倍角法
1.8倍角法的应用
1.8.1在函数sinpx,cosqx,sinpxcosqx的积分中(p,q为正整数,或奇整数,或偶整数)
1.8.2倍角法应用在含有三角函数与指数函数的积分
1.9secnx和cscnx的积分
1.10tannx和cotnx的积分
1.11有理代数分式的积分法
1.12无理代数函数的积分法
1.13含有三角函数的有理式的积分法
1.13.1一般的方法
1.13.2微分积分法
1.13.3多能替换法
1.14含有双曲函数的有理式的积分法
1.15配对积分法(组合积分法)
第2章定积分
2.1定积分的定义
2.1.1黎曼定义
2.1.2面积求和法的定义——曲线下的面积
2.2定积分的基本公式和常用法则
2.2.1定积分的基本公式
2.2.2定积分中的几个常用法则
.欧拉积分、欧拉常数及常用常数
..1B函数(Betafunction)
..2Γ函数(Gammafunction)
..几个重要常数
2.4定积分中的分部积分法
2.5定积分中的换元法
2.6含参变量的积分法
2.7无穷级数积分法
2.8反常积分(Improper)
2.8.1反常积分的定义
2.8.2反常积分存在的判别法
2.8.3反常积分算例
2.8.4伏汝兰尼(Froullani)积分
2.8.5罗巴切夫斯基(Lobachevsky)积分法
2.8.6一个通用的积分法则
2.8.7有关欧拉常数γ的几个积分
2.9定积分的近似计算
2.9.1近似计算的方法
2.9.2近似计算算例
2.9.3近似计算的误差估算
第3章定积分的应用
3.1面积的计算
3.1.1用定积分的定义来计算面积
3.1.2几种常见曲线围成的面积的计算
3.2曲线长度的计算
3.3体积的计算
3.3.1用逐次积分法计算体积
3.3.2利用横截面计算体积
3.3.3回旋体的体积
3.4表面积的计算
3.4.1投影法计算表面积
3.4.2回旋体的侧面积计算法
第4章重积分
4.1二重积分
4.1.1二重积分的定义及算例
4.1.2二重积分上、下限的确定——穿线法
4.1.3几个典型的积分次序及积分限变换的例子
4.1.4两个一元函数乘积的积分
4.2三重积分
4.2.1三重积分的定义
4.2.2三重积分的傅比尼定理
4..三重积分的算例
4.3重积分的坐标变换
4.3.1二重积分的坐标变换
4.3.2三重积分的坐标变换
4.3.3n重积分的坐标变换
第5章曲线积分和曲面积分
5.1曲线积分
5.1.1型曲线积分
5.1.2第二型曲线积分
5.1.3曲线积分的应用
5.2格林(Green)公式
5.3曲面积分
5.3.1型曲面积分
5.3.2第二型曲面积分
5.4斯托克斯(Stokes)公式
5.5高斯(Gauss)公式
5.6高斯公式和斯托克斯公式在场论中的应用
5.6.1高斯公式在场论中的应用
5.6.2斯托克斯公式在场论中的应用
第6章傅里叶积分和积分变换
6.1傅里叶(Fourier)积分
6.1.1傅里叶级数
6.1.2傅里叶积分公式
6.2傅里叶变换及其质
6.2.1傅里叶变换
6.2.2傅里叶变换的质
6..傅里叶余弦变换和正弦变换
6.2.4傅里叶变换及傅里叶余弦变换和正弦变换算例
6.2.5傅里叶变换的应用
6.3拉普拉斯(Laplace)变换
6.3.1拉普拉斯变换
6.3.2拉普拉斯变换的质
6.3.3单项式的拉普拉斯变换算例
6.3.4拉普拉斯逆变换
6.3.5拉普拉斯变换的应用
第7章复变函数的积分
7.1复变函数的概念
7.1.1复数和复平面
7.1.2复数的四则运算
7.1.3复变函数
7.2复变函数的微商(导数)
7.3复变函数的积分
7.3.1曲线积分
7.3.2柯西积分定理
7.3.3复变函数的不定积分
7.3.4柯西积分公式
7.3.5解析函数的高阶微商
7.3.6区域的柯西积分公式
7.4复变函数的无穷级数展开——泰勒级数与罗朗级数
7.4.1泰勒(Taylor)级数
7.4.2罗朗(Laurent)级数
7.5留数定理及其在积分上的应用
7.5.1留数定理
7.5.2留数的计算方法
7.5.3留数定理在定积分计算中的应用
第8章特殊函数的积分法
8.1特殊函数的积分法
8.1.1特殊函数
8.1.2积分中常用的一些公式
8.2含有贝塞尔函数的积分
8.2.1含有类贝塞尔函数的积分
8.2.2含有第二类贝塞尔函数(诺伊曼函数)的积分
8..含虚自变量的贝塞尔函数的积分
8.2.4双贝塞尔函数的积分
8.2.5贝塞尔函数与幂函数组合的积分
8.2.6贝塞尔函数与三角函数组合的积分
8.2.7贝塞尔函数与双曲函数组合的积分
8.2.8艾里(Airy)积分
8.3含有勒让德函数的积分
8.4含有超几何函数的积分
8.5马蒂厄函数的积分
8.5.1马蒂厄方程
8.5.2马蒂厄函数积分算例
参考书目
金玉明,中国科学技术大学教授、博导。1977-1992为创建我国靠前台同步輻加速器而工作。任“同步輻实验室工程”(这是由计委命名的我国靠前个实验室)副总,负责同步輻加速器的物理设计。该项目于1991年完成,于1992年获科研成果特等奖,1995年获科技进步一等奖。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格