返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 醉染图书信息时代的计算机科学理论9787313096098
  • 正版全新
    • 作者: (美)霍普克罗夫特 (美)坎南著 | (美)霍普克罗夫特 (美)坎南编 | (美)霍普克罗夫特 (美)坎南译 | (美)霍普克罗夫特 (美)坎南绘
    • 出版社: 上海交通大学出版社
    • 出版时间:2013-05-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    醉染图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: (美)霍普克罗夫特 (美)坎南著| (美)霍普克罗夫特 (美)坎南编| (美)霍普克罗夫特 (美)坎南译| (美)霍普克罗夫特 (美)坎南绘
    • 出版社:上海交通大学出版社
    • 出版时间:2013-05-01
    • 版次:1
    • 印次:1
    • 字数:620.00千字
    • 页数:386
    • 开本:16开
    • ISBN:9787313096098
    • 国别/地区:中国
    • 版权提供:上海交通大学出版社
    • 作者:(美)霍普克罗夫特 (美)坎南
    • 著:(美)霍普克罗夫特 (美)坎南
    • 装帧:平装
    • 印次:1
    • 定价:35.00
    • ISBN:9787313096098
    • 出版社:上海交通大学出版社
    • 开本:16开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2013-05-01
    • 页数:386
    • 外部编号:1200699988
    • 版次:1
    • 成品尺寸:暂无

    1 Introduction
    2 High-Dimensional Space
    2.1 Properties of High-Dimensional Space
    2.2 The High-Dimensional Sphere
    2.2.1 The Sphere and the Cube in Higher Dimensions
    2.2.2 Volume and Surface Area of the Unit Sphere
    2.. The Volume is Near the Equator
    2.2.4 The Volume is in a Narrow Annulus
    2.2.5 The Surface Area is Near the Equator
    . Volumes of Other Solids
    2.4 Generating Points Uniformly at Random on the Surface of a Sphere
    2.5 Gaussians in High Dimension
    2.6 Bounds on Tail Probability
    2.7 Random Projection and the Johnson-Lindenstrauss Theorem
    2.8 Bibliographic Notes
    2.9 Exercises
    3 Random Graphs
    3.1 TheG(n, p) Model
    3.1.1 Degree Distribution
    3.1.2 Existence of Triangles in G ( n, d
    )
    3.2 Phase Transitions
    3.3 The Giant Component
    3.4 Branching Processes
    3.5 Cycles and Full Connectivity
    3.5.1 Emergence of Cycles
    3.5.2 Full Connectivity
    3.5.3 Threshold for O (Inn) Diameter
    3.6 Phase Transitions for Monotone Properties
    3.7 Phase Transitions for CNF-sat
    3.8 Nonuniform and Growth Models of Random Graphs
    3.8.1 Nonuniform Models
    3.8.2 Giant Component in Random Graphs with Given Degree Distribution ...
    3.9 Growth Models
    3.9.1 Growth Model Without Preferential Attachment
    3.9.2 A Growth Model with Preferential Attachment
    3.10 Small World Graphs
    3.11 Bibliographic Notes
    3.12 Exercises
    4 Singular Value Decoition (SVD)
    4.1 Singular Vectors
    4.2 Singular Value Decoition (SVD)
    4.3 Best Rank k Approximations
    4.4 Power Method for Computing the Singular Value Decoition
    4.5 Applications of Singular Value Decoition
    4.5.1 Principal Component Analysis
    4.5.2 Clustering a Mixture of Spherical Gaussians
    4.5.3 An Application of SVD to a Discrete Optimization Problem
    4.5.4 Spectral Decoition
    4.5.5 Singular Vectors and Ranking Documents
    4.6 Bibliographic Notes
    4.7 Exercises
    5 Random Walks and Markov Chains
    5.1 Stationary Distribution
    5.2 Electrical Networks and Random Walks
    5.3 Random Walks on Undirected Graphs with Unit Edge Weights
    5.4 Random Walks in Euclidean Space
    5.5 The Web as a Markov Chain
    5.6 Markov Chain Monte Carlo
    5.6.1 Metropolis-Hasting Algorithm
    5.6.2 Gibbs Sampling
    5.7 Convergence of Random Walks on Undirected Graphs
    5.7.1 Using Normalized Conductance to Prove Convergence
    5.8 Bibliographic Notes
    5.9 Exercises
    6 Learning and VC-Dimension
    6.1 Learning
    6.2 Linear Separators, the Perceptron Algorithm, and Margins
    6.3 Nonlinear Separators, Support Vector Machines, and Kernels
    6.4 Strong and Weak Learning-Boosting
    6.5 Number of Examples Needed for Prediction: VC-Dimension
    6.6 Vapnik-Chervonenkis or VC-Dimension
    6.6.1 Examples of Set Systems and Their VC-Dimension
    6.6.2 The Shatter Function
    6.6.3 Shatter Function for Set Systems of Bounded VC-Dimension
    6.6.4 Intersection Systems
    6.7 The VC Theorem
    6.8 Bibliographic Notes
    6.9 Exercises
    7 Algorithms for Massive Data Problems
    7.1 Frequency Moments of Data Streams
    7.1.1 Number of Distinct Elements in a Data Stream
    7.1.2 Counting the Number of Occurrences of a Given Element
    7.1.3 Counting Frequent Elements
    7.1.4 The Second Moment
    7.2 Sketch of a Large Matrix
    7.2.1 Matrix Multiplication Using Sampling
    7.2.2 Approximating a Matrix with a Sample of Rows and Columns ...
    7.3 Sketches of Documents
    7.4 Exercises
    8 Clustering
    8.1 Some Clustering Examples
    8.2 A Simple Greedy Algorithm for k-clustering
    8.3 Lloyds Algorithm for k-means Clustering
    8.4 Meaningful Clustering via Singular Value Decoition
    8.5 Recursive Clustering Based on Sparse Cuts
    8.6 Kernel Methods
    8.7 Agglomerative Clustering
    8.8 Communities, Dense Submatrices
    8.9 Flow Methods
    8.10 Linear Programming Formulation
    8.11 Finding a Local Cluster Without Examining the Whole Graph
    8.12 Axioms for Clustering
    8.12.1 An Isibility Result
    8.12.2 A Satisfiable Set of Axioms
    8.13 Exercises
    9 Graphical Models and Belief Propagation
    9.1 Bayesian or Belief Networks
    9.2 Markov Random Fields
    9.3 Factor Graphs
    9.4 Tree Algorithms
    9.5 Message Passing Algorithm
    9.6 Graphs with a Single Cycle
    9.7 Belief Update in Networks with a Single Loop
    9.8 Maximum Weight Matching
    9.9 Warning Propagation
    9.10 Correlation Between Variables
    9.11 Exercises
    10 Other Topics
    10.1 Rankings
    10.2 Hare System for Voting
    10.3 Compressed Sensing and Sparse Vectors
    10.3.1 Unique Reconstruction of a Sparse Vector
    10.3.2 The Exact Reconstruction Property
    10.3.3 Restricted Isometry Property
    10.4 Applications
    10.4.1 Sparse Vector in Some Coordinate Basis
    10.4.2 A Representation Cannot be Sparse in Both Time and Frequency Domains
    10.4.3 Biological
    10.4.4 Finding Overlapping Cliques or Communities
    10.4.5 Low Rank Matrices
    10.5 Exercises
    11 Appendix
    11.1 Asymptotic Notation
    11.2 Useful Inequalities
    11.3 Sums of Series
    11.4 Probability
    11.4.1 Sample Space, Events, Independence
    11.4.2 Variance
    11.4.3 Variance of Sum of Independent Random Variables
    11.4.4 Covariance
    11.4.5 The Central Limit Theorem
    11.4.6 Median
    11.4.7 Unbiased Estimators
    11.4.8 Probability Distributions
    11.4.9 Maximum Likelihood Estimation MLE
    11.4.10 Tail Bounds
    11.4.11 Chernoff Bounds: Bounding of Large Deviations
    11.4.12 Hoeffdings Inequality
    11.5 Generating Functions
    11.5.1 Generating Functions for Sequences Defined by Recurrence Relationships
    11.5.2 Exponential Generating Function
    11.6 Eigenvalues and Eigenvectors
    11.6.1 Eigenvalues and Eigenvectors
    11.6.2 Symmetric Matrices
    11.6.3 Extremal Properties of Eigenvalues
    11.6.4 Eigenvalues of the Sum of Two Symmetric Matrices
    11.6.5 Norms
    11.6.6 Important Norms and Their Properties
    11.6.7 Linear Algebra
    11.6.8 Distance Between Subspaces
    11.7 Miscellaneous
    11.7.1 Variational Methods
    11.7.2 Hash Functions
    11.7.3 Catalan Numbers
    11.7.4 Sperners Lemma
    11.8 Exercises
    Index
    References

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购