由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
诺森Python化算法实战苏振裕9787301315330北京大学出版社
¥ ×1
| 篇 化算法与编程基础 |
章 化算法概述 2
1.1 化算法简介 3
1.2 化算法的内容 4
1.2.1 规划论 4
1.2.2 库存论 5
1.. 图论 6
1.2.4 排队论 7
1.2.5 可靠理论 8
1.2.6 对策论 8
1.2.7 决策论 8
1.2.8 搜索论 9
1.3 本章小结 9
第2章 Python编程方法 10
2.1 开发环境安装 11
2.2 编程基础:Python语法 17
2.2.1 基础数据结构与基本运算 18
2.2.2 关于Python的列表、元组、字典、集合 18
2.. 程序控制语句 21
2.2.4 函数 21
2.2.5 类与实例 22
2.2.6 迭代
. 数据分析:NumPy基础 24
..1 NumPy基础数据结构 24
..2 NumPy的随机数 26
.. NumPy矩阵运算 28
..4 NumPy线代数 31
2.4 Pandas基础 32
2.4.1 Pandas基础数据结构 32
2.4.2 Pandas基础统函 35
2.4.3 Pandas基础数据处理 37
2.4.4 分组统计 39
2.4.5 apply函数 41
2.5 Python绘图 42
2.5.1 常用图形 43
2.5.2 图形属 47
2.5.3 组合图和子图 49
2.5.4 三维图 51
2.5.5 动态图 55
2.6 本章小结 57
第3章 Gurobi优化器 58
3.1 Gurobi的数据结构 59
3.1.1 Multidict 59
3.1.2 Tuplelist 60
3.1.3 Tupledict 61
3.1.4 应用范例 62
3.2 Gurobi的参数和属 65
3.2.1 参数类型 65
3.2.2 修改参数 75
3.. 修改参数的例子 75
3.2.4 属类型 77
3.2.5 查看修改属 85
3.2.6 修改属的例子 85
3.3 Gurobi线化技巧 85
3.3.1 值max 86
3.3.2 值min 88
3.3.3 值abs 89
3.3.4 逻辑与and 90
3.3.5 逻辑或or 90
3.3.6 指示函数indicator 90
3.3.7 带固定成本约束 91
3.3.8 分段线函数 91
3.4 Gurobi多目标优化 92
3.5 callback函数 96
3.5.1 回调函数callback定义 97
3.5.2 状态where与值what 97
3.5.3 callback函数的功能 98
3.6 本章小结 102
| 第2篇 数学规划方法 |
第4章 线规划 104
4.1 线规划的标准型 105
4.2 单纯形法 105
4.2.1 单纯形法的原理 106
4.2.2 单纯形法的过程 106
4.. 单纯形法代码 111
4.3 单纯形的数学规范型 113
4.4 内点法 114
4.4.1 内点法的原理 114
4.4.2 内点法过程 115
4.4.3 内点法代码 118
4.5 列生成法 120
4.5.1 列生成法的原理 120
4.5.2 列生成的过程 1
4.6 对偶问题 126
4.6.1 对偶问题的形式 127
4.6.2 对称形式对偶 128
4.6.3 对偶单纯形 129
4.6.4 对偶问题的应用 130
4.7 拉格朗日乘子法 130
4.7.1 无约束优化 131
4.7.2 等式约束优化 131
4.7.3 不等式约束优化 132
4.7.4 拉格朗日对偶 134
4.8 本章小结 137
第5章 整数规划 138
5.1 快速掌握Gurobi整数规划 139
5.2 分支定界法 140
5.3 割平面法 142
5.4 本章小结 147
第6章 多目标优化 148
6.1 多目标优化的一般形式 149
6.2 Pareto解 149
6.3 多目标优化求解方法 151
6.4 目标规划法 152
6.4.1 偏差变量 153
6.4.2 优先等级和权重系数 153
6.4.3 目标规划单纯形法 154
6.4.4 目标规划Gurobi实现 158
6.5 NSGA-Ⅱ 159
6.6 本章小结 160
| 第3篇 启发式算法 |
第7章 动态规划 162
7.1 多阶段决策问题 163
7.2 动态规划的基本概念 164
7.3 动态规划的化原理 165
7.4 短路径问题 166
7.5 使用整数规划解短路径问题 169
7.6 背包问题 170
7.7 本章小结 175
第8章 图与网络分析 176
8.1 图的基本概念 177
8.2 图的矩阵表示 178
8.3 生成树 179
8.4 短路径问题 183
8.5 网络流问题 187
8.6 路径规划 190
8.7 VRP问题 196
8.8 本章小结 203
第9章 智能优化算法 204
9.1 粒子群算法 205
9.1.1 粒子群算法原理 205
9.1.2 粒子群求解无约束优化问题 207
9.1.3 粒子群求解约束优化问题 211
9.1.4 粒子群求解旅行商问题 218
9.2 遗传算法 225
9.2.1 遗传算法原理 225
9.2.2 遗传算法的编码方法 227
9.. 遗传算法的选择操作 0
9.2.4 遗传算法求解无约束优化问题 1
9.2.5 遗传算法库Geatpy的介绍
9.2.6 使用Geatpy求解约束优化问题
9.2.7 使用Geatpy求解多目标优化问题 241
9.3 本章小结 242
苏振裕,厦门大学金融学硕士,现任SHEIN智慧供应链资深算法。知乎专栏《从推公式到写代码》作者,运筹优化论坛(optimize.fun)的创建人。在大数据、人工智能、运筹优化和供应链方,有多年的相关算法研究及应用经验。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格