返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 诺森Apache Airflow 数据编排实战
  • 正版
    • 作者: [荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译著 | [荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译编 | [荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译译 | [荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译绘
    • 出版社: 清华大学出版社
    • 出版时间:2021-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    诺森文化制品专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: [荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译著| [荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译编| [荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译译| [荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译绘
    • 出版社:清华大学出版社
    • 出版时间:2021-01
    • 版次:1
    • 字数:618000
    • 页数:856
    • 开本:32开
    • ISBN:9787302618157
    • 版权提供:清华大学出版社
    • 作者:[荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译
    • 著:[荷] 巴斯·哈伦斯拉克(Bas Harenslak),朱利安·德·瑞特(Julian de Ruiter)著 殷海英 译
    • 装帧:平装
    • 印次:暂无
    • 定价:128.00
    • ISBN:9787302618157
    • 出版社:清华大学出版社
    • 开本:32开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2021-01
    • 页数:856
    • 外部编号:11966575
    • 版次:1
    • 成品尺寸:暂无

    第Ⅰ部分 入门

    章 遇见Apache Airflow 3

    1.1 数据管道介绍 3

    1.1.1 数据管道的图形表示 4

    1.1.2 运行管道图 5

    1.1.3 管道图与顺序脚本 6

    1.1.4 使用工作流管理器运行数据流 8

    1.2 Airflow介绍 9

    1.2.1 通过Python代码灵活定义数据管道 9

    1.2.2 调度并执行数据管道 10

    1.. 监控和处理故障 11

    1.2.4 增量载入和回填 14

    1.3 何时使用Airflw 4

    1.3.1 选择Airflow的原因 14

    1.3.2 不使用Airflow的理由 15

    1.4 本书的其余部分 15

    1.5 本章小结 16

    第2章 Airflow DAG深度解析 17

    2.1 从大量数据源中收集数据 17

    2.2 编写你的个Airflow DAG 19

    2.2.1 任务与operator 22

    2.2.2 运行任意Python代码

    . 在Airflow中运行DAG 25

    ..1 在Python环境中运行Airflow 25

    ..2 在Docker容器中运行Airflow 26

    .. 使用Airflow图形界面 27

    2.4 运行定时任务 31

    2.5 处理失败的任务 32

    2.6 本章小结 34

    第3章 Airflow中的调度 35

    3.1 示例:处理用户事件 35

    3.2 定期执行DAG 37

    3.2.1 使用调度器计划运行 37

    3.2.2 基于cron的时间间隔 38

    3.. 基于频率的时间间隔 40

    3.3 增量处理数据 40

    3.3.1 获取增量事件数据 40

    3.3.2 使用执行日期的动态时间参考 42

    3.3.3 对数据执行分区 43

    3.4 理解Airflow的执行日期 45

    3.5 使用回填技术填补过去的空白 47

    3.6 任务设计的很好实践 49

    3.6.1 原子 49

    3.6.2 幂等 51

    3.7 本章小结 52

    第4章 使用Airflow context对任务进行模板化 53

    4.1 为Airflow准备数据 53

    4.2 任务context和Jinja模板 55

    4.2.1 对operator使用参数模板 56

    4.2.2 模板中可用的变量及表达式 57

    4.. 对PythonOperator使用模板 60

    4.2.4 为PythonOperator提供变量 64

    4.2.5 检查模板化参数 66

    4.3 连接到系统 67

    4.4 本章小结 74

    第5章 定义任务之间的依赖关系 75

    5.1 基本依赖关系 75

    5.1.1 线依赖关系 75

    5.1.2 扇入/扇出依赖 77

    5.2 分支 79

    5.2.1 在任务内部执行分支操作 79

    5.2.2 在DAG中使用分支技术 81

    5.3 带有条件的任务 85

    5.3.1 在任务内部使用条件 85

    5.3.2 对DAG使用条件 86

    5.3.3 使用内置operator 88

    5.4 触发条件详解 88

    5.4.1 什么是触发规则 88

    5.4.2 失败的影响 89

    5.4.3 触发规则 90

    5.5 在任务之间共享数据 91

    5.5.1 使用XCom共享数据 91

    5.5.2 XCom的适用场景 94

    5.5.3 使用自定义XCom后端存储 95

    5.6 使用Taskflow API连接Python任务 95

    5.6.1 使用Taskflow API简化Python任务 96

    5.6.2 Taskflow API的适用场景 98

    5.7 本章小结 99

    第Ⅱ部分 Airflow深入学习

    第6章 触发工作流 103

    6.1 带有传感器的轮询条件 103

    6.1.1 轮询自定义条件 106

    6.1.2 传感器的异常情况 107

    6.2 触发DAG 110

    6.2.1 使用TriggerDagRunOperator执行回填操作 114

    6.2.2 轮询 DAG 的状态 114

    6.3 使用REST/CLI启动工作流 117

    6.4 本章小结 120

    第7章 与外部系统通信 121

    7.1 连接到云服务 122

    7.1.1 安装额外的依赖软件包 122

    7.1.2 开发一个机器学习模型 1

    7.1.3 在本地开发外部系统程序 128

    7.2 在系统之间移动数据 134

    7.2.1 实现PostgresToS3Operatr 36

    7.2.2 将繁重的任务“外包”出去 139

    7.3 本章小结 141

    第8章 创建自定义组件 143

    8.1 从PythonOperator开始 143

    8.1.1 模拟电影评分API 144

    8.1.2 从API获取评分数据 146

    8.1.3 构建具体的DAG 149

    8.2 创建自定义hook 151

    8.2.1 设定自定义hook 151

    8.2.2 使用MovielensHook构建DAG 156

    8.3 构建自定义operatr 58

    8.3.1 创建自定义operatr 58

    8.3.2 创建用于获取评分数据的operatr 59

    8.4 创建自定义传感器 162

    8.5 将你的组件打包 165

    8.5.1 引导Python包 166

    8.5.2 安装你的Python包 168

    8.6 本章小结 169

    第9章 测试 171

    9.1 开始测试 171

    9.1.1 所有DAG的完整测试 172

    9.1.2 设置C/C管道 177

    9.1.3 编写单元测试 179

    9.1.4 pytest项目结构 180

    9.1.5 使用磁盘上的文件测试 184

    9.2 在测试中使用DAG和任务context 186

    9.3 使用测试进行开发 198

    9.4 使用Whirl模拟生产环境 201

    9.5 创建DTAP环境 201

    9.6 本章小结 201

    0章 在容器中运行任务 203

    10.1 同时使用多个不同operator所面临的挑战 203

    10.1.1 operator接口和实现 204

    10.1.2 复杂且相互的依赖关系 204

    10.1.3 转向通用operator 205

    10.2 容器 205

    10.2.1 什么是容器 206

    10.2.2 运行个Docker容器 207

    10.. 创建Docker映像 207

    10.2.4 使用卷持久化数据 209

    10.3 容器与Airflow 212

    10.3.1 容器中的任务 212

    10.3.2 为什么使用容器 212

    10.4 在Docker中运行任务 213

    10.4.1 使用DockerOperator 213

    10.4.2 为任务创建容器映像 215

    10.4.3 使用Docker任务创建DAG 218

    10.4.4 基于Docker的工作流 220

    10.5 在Kubernetes中运行任务 221

    10.5.1 Kubernetes介绍 221

    10.5.2 设置Kubernetes 222

    10.5.3 使用KubernetesPodOperator 225

    10.5.4 诊断Kubernetes相关的问题 228

    10.5.5 与基于docker的工作流的区别 0

    10.6 本章小结 1

    第Ⅲ部分 Airflow实践

    1章 很好实现 5

    11.1 编写清晰的DAG 5

    11.1.1 使用风格约定 5

    11.1.2 集中管理凭

    11.1.3 统一指定配置详细信息 240

    11.1.4 避免在DAG定义中计算 242

    11.1.5 使用工厂函数生成通用模式 244

    11.1.6 使用任务组对相关任务进行分组 247

    11.1.7 为重大变更创建新的DAG 248

    11.2 设计可重用的任务 249

    11.2.1 要求任务始终满足幂等 249

    11.2.2 任务结果的确定 249

    11.. 使用函数式范式设计任务 250

    11.3 高效处理数据 250

    11.3.1 处理的数据量 250

    11.3.2 增量载入与增量处理 252

    11.3.3 缓存中间数据 252

    11.3.4 不要将数据存储在本地文件系统 253

    11.3.5 将工作卸载到外部系统或源系统 253

    11.4 管理资源 254

    11.4.1 使用资源池管理并发 254

    11.4.2 使用SLA和告警来检测长时间运行的任务 255

    11.5 本章小结 256

    2章 在生产环境中使用Airflow 257

    12.1 Airflow架构 258

    12.1.1 挑选适合的执行器 259

    12.1.2 为Airflow配置metastore 259

    12.1.3 深入了解调度器 261

    12.2 安装每个执行器 265

    12.2.1 设置SequentialExecutor 266

    12.2.2 设置LocalExecutor 266

    12.. 设置CeleryExecutor 267

    12.2.4 设置KubernetesExecutor 269

    1. 捕获所有Airflow进程的日志 276

    1..1 捕获Web服务器输出 276

    1..2 捕获调度器输出 277

    1.. 捕获任务日志 278

    1..4 将日志发送到远程存储 278

    12.4 可视化及监控Airflow指标 279

    12.4.1 从Airflow收集指标 279

    12.4.2 配置Airflow以发送指标 280

    12.4.3 配置Prometheus以收集指标 281

    12.4.4 使用Grafana创建仪表板 283

    12.4.5 应监控的指标 285

    12.5 如何获得失败任务的通知 287

    12.5.1 DAG和operator内的告警 287

    12.5.2 定义服务级别协议(SLA) 289

    12.6 可伸缩与能 290

    12.6.1 控制优选运行任务数 290

    12.6.2 系统能配置 292

    12.6.3 运行多个调度器 292

    12.7 本章小结 293

    3章 Airflow安全 295

    13.1 保护Airflow Web界面 296

    13.1.1 将用户添加到RBAC界面 296

    13.1.2 配置RBAC界面 299

    13.2 加密静态数据 300

    13.3 连接LDAP服务 301

    13.3.1 理解LDAP 302

    13.3.2 从LDAP服务获取用户 304

    13.4 加密与Web服务器的通信 305

    13.4.1 了解HTTPS 305

    13.4.2 为HTTPS配置 307

    13.5 从认管理系统获取凭 311

    13.6 本章小结 314

    4章 实战:探索游览纽约市的快方式 315

    14.1 理解数据 318

    14.1.1 Yellow Cab文件共享 318

    14.1.2 Citi Bike REST API 319

    14.1.3 确定算法 320

    14.2 提取数据 320

    14.2.1 下载Citi Bike数据 321

    14.2.2 下载Yellow Cab数据 3

    14.3 对数据应用类似的转换 325

    14.4 构建数据管道 330

    14.5 开发幂等的数据管道 331

    14.6 本章小结 333

    第Ⅳ部分 在云端

    5章 Airflow在云端 337

    15.1 设计云端部署策略 337

    15.2 云端专用的hook和operator 339

    15.3 托管服务 340

    15.3.1 Astronomer.io 340

    15.3.2 Google Cloud Coer 340

    15.3.3 适用于Apache Airflow的Amazon托管工作流 341

    15.4 选择部署策略 342

    15.5 本章小结 342

    6章 在AWS中运行Airflow 345

    16.1 在AWS中部署Airflow 345

    16.1.1 选择云服务 345

    16.1.2 设计网络 347

    16.1.3 添加DAG同步 347

    16.1.4 使用CeleryExecutor扩展 348

    16.1.5 后续步骤 349

    16.2 针对AWS的hook和operator 350

    16.3 用例:使用AWS Athena进行无服务器的电影排名 351

    16.3.1 用例概要 352

    16.3.2 设置资源 352

    16.3.3 创建DAG 355

    16.3.4 环境清理 360

    16.4 本章小结 361

    7章 在Azure中使用Airflow 363

    17.1 在Azure中部署Airflow 363

    17.1.1 选择服务 363

    17.1.2 设计网络 364

    17.1.3 使用CeleryExecutor扩展 365

    17.1.4 后续步骤 366

    17.2 针对Azure设计的hook和operator 367

    17.3 示例:在Azure上运行无服务器的电影程序 367

    17.3.1 示例概要 368

    17.3.2 设定资源 368

    17.3.3 创建DAG 372

    17.3.4 环境清理 377

    17.4 本章小结 378

    8章 在GCP中运行Airflow 379

    18.1 在GCP中部署Airflow 379

    18.1.1 选择服务 379

    18.1.2 使用Helm在GKE上部署Airflow 381

    18.1.3 与Google服务集成 383

    18.1.4 设计网络 385

    18.1.5 通过CeleryExecutor扩展 386

    18.2 针对GCP的hook和operator 388

    18.3 用例:在GCP上运行无服务器的电影评级 392

    18.3.1 上传到GCS 392

    18.3.2 将数据导入Bigery 394

    18.3.3 提取优选评分 396

    18.4 本章小结 399

    附录A 运行示例代码 401

    附录B Airflw 和Airflow 2中的包结构 405

    附录C Prometheus指标映 409

    Bas Harenslak和Julian de Ruiter是数据,他们在为大公司开发数据管道方面拥有丰富的经验。同时,Bas也是一位Airflow的提交者。


    数据管道通过整合、清理、分析、可视化等方式来管理初始收集的数据流。Apache Airflow提供了一个统一的平台,可以使用它设计、实施、监控和维护数据的流动。Airflow具有易于使用的UI、即插即用的选项以及灵活的Python脚本,这些都使Airflow能够轻松地完成任何数据管理任务。

    在《Apache Airflow数据编排实战》中,介绍了如何构建和维护有效的数据管道。与你一同探索常见的使用模式,包括聚合多个数据源、连接到数据湖以及云端部署。可以将本书作为Airflow的实用指南,本书涵盖了为Airflow提供动力的有向无环图(DAG)的各方面知识,以及如何根据工作需求对其进行自定义的技术。

    主要内容

    ●构建、测试及部署Airflow管道作为DAG

    ●自动对数据进行移动和转换

    ●使用回填技术分析历史数据集

    ●开发自定义组件

    ●在生产环境中搭建Airflow

    "《Apache Airflow 数据编排实战》通过4部分深入浅出地介绍了什么是Airflow,如 何部署和使用Airflow, 并涉及许多深入的主题,让你对Airflow 能够有全面的了解,并 且在本书的第I部分,为大家提供了许多实用的案例,让你能够快速使用Airflow解决 工作中遇到的各种数据流处理问题。现在是云的时代,在本书的第IV部分介绍了大量的 上云示例,让你能够轻松地使用Airflow管理各种本地、云端或者二者混合在- -起的数 据流。 "

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购