由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
全新正版物体检索与定位9787113286552中国铁道
¥ ×1
章 大数据时代的目标检索及应用
1.1 大数据时代的大搜索趋势
1.2 物体搜索:问题与挑战
1.2.1 示例检索
1.2.2 标签检索与定位
1.. 关键技术难题
1.3 针对物体检索与定位的研究历史与现状
1.3.1 基于示例的检索模型
1.3.2 图像标注
1.3.3 物体检测
1.4 技术测评
1.4.1 数据集介绍
1.4.2 能评指标
参考文献
第2章 视觉词组的贝叶斯池化模型
2.1 词袋模型
2.2 词袋模型相关工作
2.2.1 视觉单词的上下文建模
2.2.2 视觉突爆现象
2.. 贝叶斯决策理论
. 基于视觉词组的示例检索模型
..1 视觉词组的挖掘
..2 相似度量
.. 相关工作在框架下的解释
2.4 贝叶斯池化模型
2.4.1 突爆匹配与池化
2.4.2 模型的建立
2.4.3 参数估计
2.5 实验结果与分析
2.5.1 实现细节
2.5.2 参数影响
2.5.3 能对比
2.5.4 可视化分析
小结
参考文献
第3章 位置对齐的深度示例检索模型
3.1 示例检索的研究现状
3.2 示例检索有关的技术发展
3.2.1 深度卷积网络
3.2.2 基于深度卷积网络的示例检索
3.3 模型整体结构
3.4 似物采样
3.5 基于排序学习的深度特征学习模型
3.5.1 模型结构
3.5.2 模型训练
3.5.3 特征提取
3.6 半监督的训练数据收集策略
3.7 搜索与排序
3.7.1 级联量化编码
3.7.2 索引结构
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格