由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
全新正版抽象代数讲义(第2卷)97875100615世界图书出版公司
¥ ×1
CHAPTER I: FINITE DIMENSIONL ECTOR SPACES
SECTION
1.Abstract vector spaces
2.Rightvectorspaces
3.o-modules
4.Linear dependence
5.Invariance of dimensionality
6.Bases and matrices
7.Applications to matrix theory
8.Rank ofa set ofvectors
9.Factor spaces
10.Algebra ofsubspaces
11.Independent subspaces, direct sums
CHAPTER II: LINEAR TRANSFORMATIONS
1.Definition and examples
2.Coitions of linear transformations
3.The matrix of a linear transformation
4.Coitions ofmatrices
5.Change of basis.Equivalence and similarity of matrices
6.Rank space and null space of a linear transformation
7.Systems oflinear equations
8.Linear transformations in right vector spaces
9.Linear functions
10.Duality between a finite dimensional space and its .conjugate space
11.Transpose of a linear transformation
12.Matrices of the transpose
13.Projections
CHAPTER III: THE THEORY OF A SINGLE LINEAR TRANSFORMATION
1.The minimum polynomial of a linear transformation
2.Cyclicsubspaces
3.Existence of a vector whose order is the minimum polynomial
4.Cyclic linear transformations
5.The module det:ermiried by a linear transformation
6.Finitely generated o-modules, o, a principal ideal domain
7.Normalization of the generators of; and of
8.Equivalence of matrices with elements in a principal ideal domain
9.Structure of finitely generated o-modules
10.Invarjance theorems
11.Decoition of a vector space relative to a linear trans- formation
12.The characteristic and minimum polynomials
13.Direct proof of Theorem 13
14.Formal properties of the trace and the characteristic poly- nomial
15.The ring of o-endomorphisms of a cyclic o-module
16.Determination of the ring of o-endomorphisms of a finitely generated o-module, o principal
17.The linear transformations which commute with a given lin- ear transformation
18.The center of the ring
CHAPTER Ⅳ: SETS OF LINEAR TRANSFORMATIONS
1.Invariant subspaces
2.Induced linear transformations
3.Coition series
4.Decoability
5.Complete reducibility
6.Relation to the theory of operator groups and the theory of modules
7.Reducibility, decoability, complete reducibility for a single linear transformation
8.The primary components of a space relative to a linear trans- formation
9.Sets of commutative linear transformations
CHAPTER Ⅴ: BILINEAR FORMS
1.Bilinear forms
2.Matrices of a bilinear form
SECTION
3.Non-degenerate forms
4.Transpose of a linear transformation relative to a pair-of bilinear forms
5.Another relation between linear transformations and bilinear forms
6.Scalar products
7.Hermitian scalar products
8.Matrices of hermitian scalar products
9.Symmetric and hermitian scalar products over special division rings
10.Alternate scalar products
11.Witt's theorem
12.Non-alternate skew-symmetric forms
CHAPTER VI; EUCLEAN" AND UNITARY SPACES
1.Cartesian bases
2.Linear transformations and scalar products
3.Orthogonal complete reducibility
4.Symmetric, skew and orthogonal linear transformations
5.Canonical matrices for symmetric and skew linear transformations
6.Commutative symmetric and skew ]near transformations
7.Normal and orthogonal linear transformations
8.Semi-definite transformations
9.Polar factorization of an arbitrary ]near transformation
10.Unitary geometry
11.Analytic functions of linear transformations
CHAPTER VII PRODUCTS OF VECTOR SPA(~ES
1.PrOduct groups of vector spaces
2.Direct products of linear transformations
3.Two-sided vector spaces
4.The Kronecker product
5.Kronecker products of linear transformations and of matrices
6.Tensor spaces
7.Symmetry classes of tensors
8.Extension of the field of a vector space
9.A theorem on similarity of sets of matrices
SECTION
10.A_Iternativc definition of an algebra.Kronecker product of algebras
CHAPTER VIII: THE RING OF LINEAR TRANSFORMATIONS
1.Simplicity of
2.Operator methods
3.The left ideals of
4.Right ideals
5.Isomorphisms of rings of linear transformations
CHAPTER IX: INFINITE DIMENSIONL ECTOR SPACES
1.Existence of a basis
2.Invariance of dimensionality
3.Subspaces
4.Linear transformations and matrices
5.Dimensionality of the conjugate space
6.Finite topology for linear transformations
7.Total subspaces of 9~*
8.Dual spaces.Kronecker products
9.Two-sided ideals in the ring of linear transformations
10.Dense rings of linear transformations
11.Isomorphism theorems
12.Anti-automorphisms and scalar products
13.Schur's lemma.A general density theorem
14.Irreducible algebras of linear transformations
Index
《抽象代数讲义》是一套久负盛名的三卷集教材,是作者雅格布斯根据他在霍普金斯大学和耶鲁大学讲课时的讲义编写而成的,后又成为作者《基本代数学》一书的蓝本。卷介绍了群、环、域、同构等抽象代数的重要的基本概念和抽象代数的基本质。《抽象代数讲义(第2卷》主要涉及线代数理论,着重论述了向量空间理论。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格