由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
全新正版遍历理论引论9787560392752哈尔滨工业大学出版社
¥ ×1
第0章预备知识
0.1引言
0.2测度空间
0.3积分
S0.4连续测度和条件期望
0.5函数空间·§
0.6 Harr测度
0.7特征标理论
0.8环面自同态
§0.9Perron-Frobenius理论
0.10拓扑
章保测变换
1.1定义与例子
1.2遍历理论中的问题
1.3相伴等距
1.4回复
1.5遍历
1.6遍历定理
1.7混合
第2章自同构,共轭与谱同构
2.1点映和集映
2.2保测变换的同构
.保测变换的共轭
2.4同构问四
2.5谱间构
2.6谱不变量
第3章具有离散谱的保测变换
3.1特征值与特征函数
3.2离散谱
3.3旋转>
第4章熵
4.1分割与子代数
4.2分割的熵
4.3条件熵
4.4保测变换的熵
4.5 h(T,/)和h(T)的质
4.6计算h(T)的一些方法
4.7例子
4.8熵这个不变量有多好?
4.9 Bernoulli 自同构与Kooorov自同构
S4.10保测度变换的Pinsker o代数
4.11序列熵
4.12不可逆变换
4.13评注
第5章拓扑动力学
5.1例子
5.2极小
5.3非游荡集
……
0章应用和主题
10.1微分同胚的定态
10.2次加遍历定理与乘遍历定理
10.3拟不变测度
10.4同构的类型
10.5区间变换
10.6进一步阅读
参考文献
本书共分为3部分,部讨论了概率空间的保测变换、回复质、混合质、Birkhoff遍历定理、同构与谱同构、以及熵理论等内容;第二部分讨论了紧可度量化空间的连续变换的遍历理论、研究了连续变换的不变概率测度族、以及变换的有关质等内容;第三部分讨论了近的重要结果以及遍历理论在数学分支中的应用。本书共分为11章,为了解遍历测度提供了一个基本的理论基础。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格