返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 全新正版化工热力学9787122414717化学工业出版社
    • 作者: 王英龙主编著 | 王英龙主编编 | 王英龙主编译 | 王英龙主编绘
    • 出版社: 化学工业出版社
    • 出版时间:2021-03-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    如梦图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 王英龙主编著| 王英龙主编编| 王英龙主编译| 王英龙主编绘
    • 出版社:化学工业出版社
    • 出版时间:2021-03-01
    • 版次:1
    • 字数:496000
    • 页数:320
    • 开本:16开
    • ISBN:9787122414717
    • 版权提供:化学工业出版社
    • 作者:王英龙主编
    • 著:王英龙主编
    • 装帧:平装
    • 印次:暂无
    • 定价:69.00
    • ISBN:9787122414717
    • 出版社:化学工业出版社
    • 开本:16开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2021-03-01
    • 页数:320
    • 外部编号:11716230
    • 版次:1
    • 成品尺寸:暂无

    Chapter 1 Introduction 1

    1.1 The Category of Chemical Engineering Thermodynamics 1

    1.2 The Role of Thermodynamics in Chemical Engineering 2

    1.3 Fundamental Law of Thermodynamics 3

    1.4 Application of Chemical Engineering Thermodynamics 5

    1.5 The State and System 7


    Chapter 2 The Physical Properties of Pure Substances 10

    2.1 Pure Substance 10

    2.2 Phases of Pure Substance 10

    . Phase-change Processes of Pure Substances 11

    2.4 Property Diagrams for Phase-Change Processes 13

    2.4.1 The T-V Diagram 14

    2.4.2 The p-V Diagram 15

    2.4.3 The p-T Diagram 17

    2.4.4 The p-V-T Surface 17

    2.5 Equation of State 22

    2.5.1 The Ideal-Gas Equation of State 22

    2.5.2 Nonideality of Gases

    2.6 Other Equations of State

    2.6.1 The van der Waals Equation of State 24

    2.6.2 Redlich-Kwong (RK) Equation of State 25

    2.6.3 The Soave-Redlich-Kwong (SRK) Equation of State 25

    2.6.4 Peng-Robinson (PR) Equation of State 26

    2.6.5 Virial Equation of State 26

    2.6.6 Multiparameter Equation of State 27

    2.7 Principle of Corresponding States and Generalized Association 33

    2.7.1 Principle of Corresponding States 34

    2.7.2 Principle of Corresponding States with Two Parameters 34

    2.7.3 Principle of Corresponding States with Three Parameters 35

    2.7.4 Generalized Compressibility Factor Graph Method 35

    2.7.5 Generalized Virial Coefficient Method 36

    2.8 Application of Aspen Plus in Calculation of Thermodynamic Equation of State 39

    EXERCISES 43

    REFERENCES 44


    Chapter 3 Thermodynamic Properties of Pure Fluids 45

    3.1 Mathematical Relationship between Functions 45

    3.1.1 Partial Differentials 45

    3.1.2 Partial Differential Relations 47

    3.1.3 Fundamental Thermodynamic Relation 48

    3.2 The Maxwell Relations 49

    3.3 The Clapeyron Equation 51

    3.4 General Relations for dU, dH, dA, and dG 52

    3.5 Joule-Thomson Coefficient 58

    3.6 The ?H, ?U, and ?S of Real Gas 60

    3.7 Application of Aspen in Thermodynamic Properties 62

    CONCLUSION 64

    EXERCISES 66

    REFERENCES 68


    Chapter 4 The Thermodynamics of Multicomponent Mixtures 69

    4.1 Excess Property 70

    4.2 Properties Change on Mixing 71

    4.3 Partial Molar Gibbs Free Energy 78

    4.4 Gibbs-Duhem Equation 79

    4.5 The Experimental Measurement of Partial Molar Volume and Enthalpy 82

    4.6 Gibbs Free Energy and Fugacity of a Component in a Mixture 89

    4.6.1 Ideal Gas Mixture 89

    4.6.2 Ideal Mixture and Excess Mixture Properties 91

    4.6.3 Partial Molar Gibbs Free Energy and Fugacity 95

    4.7 Application of Aspen Plus to Thermodynamic Properties of multicomponent Mixtures 100

    CONCLUSION 103

    EXERCISES 103

    REFERENCES 105


    Chapter 5 Phase Equilibrium 106

    5.1 Phase Equilibrium for a Single-Component System 106

    5.1.1 Mathematical Models of Phase Equilibrium 106

    5.1.2 Fugacity and Its Use in Modeling Phase Equilibrium 117

    5.2 Vapor-Liquid Equilibrium 121

    5.2.1 Motivational Example 121

    5.2.2 Raoult’s Law and the Presentation of Data 1

    5.. Mixture Critical Points 131

    5.2.4 Lever Rule and the Flash Problem 132

    5.3 Theory and Model of Vapor Liquid Equilibrium of Mixtures: Modified Raoult’s law Methd 34

    5.3.1 Examples of Incentives 134

    5.3.2 Phase Equilibrium of Mixture 135

    5.3.3 Fugacity of Mixture 138

    5.3.4 Gamma-Phi Modeling 142

    5.3.5 Raoult’s law Revisited 143

    5.3.6 Henry’s law 144

    5.4 Wilson and Van Laar Equation 155

    5.4.1 Wilson Equation 155

    5.4.2 Relationship between Activity Coefficient and Temperature and Pressure 157

    5.4.3 Van Laar Equation and Regular Solution Theory 160

    5.4.4 Van Der Waals One-Fluid Mixing Rules 161

    5.5 Supplementary Simulation Examples 166

    5.5.1 Vapor-Liquid Equilibrium Calculations Using Activity Coefficient Models 166

    5.5.2 Vapor-Liquid Equilibrium Calculations Using an Equation of State 179

    5.5.3 Prediction of Liquid-Liquid and Vapor-Liquid-Liquid Equilibrium 192

    EXERCISES 196

    REFERENCES 198


    Chapter 6 Energy Analysis of Chemical Process 200

    6.1 The Definition of Entropy Exergy 200

    6.2 Exergy (Work Potential) Associated with Kinetic and Potential Energy 201

    6.3 Reversible Work and Irreversibility 203

    6.4 Second-law Efficiency 204

    6.5 Exergy Change of a System 206

    6.5.1 Exergy of a Fixed Mass: Nonflow (or Closed System) Exergy 206

    6.5.2 Exergy of a Flow Stream: Flow (or Stream) Exergy 208

    6.6 Exergy Transfer by heat, work, and mass 212

    6.6.1 Exergy Transfer by Heat, 22

    6.6.2 Exergy Transfer from Work, Xwork 213

    6.6.3 Exergy Transfer by Mass, m 214

    6.7 The Decrease of Exergy Principle and Exergy Destruction 214

    6.8 Exergy Balance: Closed Systems 219

    6.9 Exergy Balance: Control Volumes 227

    6.9.1 Exergy Balance for Steady-Flow Systems 228

    6.9.2 Second-Law Efficiency of Steady-Flow Devices 0

    6.10 Chemical Process Energy Analysis and Aspen Plus

    EXERCISES

    REFERENCES 5


    Chapter 7 Thermodynamic Processes and Cycles

    7.1 Chemical Process Design

    7.2 Real Heat Engines

    7.2.1 Comparing the Carnot Cycle with the Rankine Cycle 240

    7.2.2 Design Variations in the Rankine Heat Engine 241

    7.3 The Vapor-Compression Cycle 245

    7.4 Power Cycle and Refrigeration Cycle 246

    7.4.1 Thermodynamic Cycles 246

    7.4.2 Property Diagrams 248

    7.4.3 The Carnot Cycle and Its Value in Engineering 248

    7.4.4 Air-standard Assutin 250

    7.4.5 Rankine Cycle: The Ideal Cycle for Vapor Power Cycles 251

    7.4.6 Energy Analysis of the Ideal Rankine Cycle 252

    7.4.7 The Ideal Re-heat Rankine Cycle 254

    7.4.8 The Ideal Regenerative Rankine Cycle 255

    7.5 Second-Law Analysis of Vapor Power Cycles 255

    7.5.1 Combined Gas-Vapor Power Cycles 257

    7.5.2 Refrigeration Cycles 258

    7.5.3 Refrigerators and Heat Pumps 260

    7.5.4 The Reversed Carnot Cycle 261

    7.6 Application of Thermodynamic Processes and Cycles in Aspen Plus 262

    EXERCISES 267

    REFERENCES 270


    Chapter 8 Chemical Reaction Equilibrium 271

    8.1 Motivational Example: Propylene from Propane 272

    8.2 Chemical Reaction Stoichiometry 278

    8.2.1 Extent of Reaction and Time-Independent Mole Balances 279

    8.2.2 Extent of Reaction and Time-Dependent Material Balances 281

    8.3 The Equilibrium Criterion Applied to a Chemical Reaction 282

    8.3.1 The Equilibrium Constant 282

    8.3.2 Accounting for the Effects of Pressure 285

    8.3.3 Accounting for Changes in Temperature 286

    8.3.4 Reference States and Nomenclature 292

    8.4 Multiple Reaction Equilibrium 293

    8.5 Summary 297

    8.6 Chemical Reaction Equilibrium Simulation 298

    EXERCISES 301

    REFERENCES 303

    王英龙,青岛科技大学化工学院,教授,王英龙,男。教授,青岛科技大学化工学院。主要教经:

    化工工艺模拟与计算,2021,生,24学时,青岛科技大学

    化工原理,2006-2021,生,32学时,青岛科技大学

    化工热力学,2018-2020,生,56学时,青岛科技大学

    化工原理实验,2006-2020,生,16学时,青岛科技大学

    化工过程模拟,2015-2020,,32学时,青岛科技大学

    学科前沿讲座,2018-2020,博士生,40学时,青岛科技大学

    教学成果:

    1. 化工类专业硕士科学认知与工程实践贯通式培养模式,2017年山东省第八届高等教育教学成果奖,一等奖(1/9)。

    2. 《含低碳醇二元共沸物共沸特的SPR模型及其特殊精馏分离策略》(:梁石生),2018年山东省硕士。

    3. 《混合萃取剂分离THF-乙醇-水三元共沸物系的协同效应及工艺集成与控制》(:赵永滕),2019年山东省硕士。

    4. 多元共沸物节能分离技术及其工业应用(:马康),2018年山东省科技创新成果奖。

    5. 乙二醇萃取精馏分离乙醇-四氢呋喃的工程设计与控制(:张青),2015年山东省专业实践成果奖。

    《Chemical Engineering Thermodynamics》(化工热力学)共8章,章介绍了化工热力学的用途、研究内容、研究特点和基本定律;第2章交代了纯物质的相态变化、纯物质的p-V-T关系、气体的状态方程和对比态原理及其应用;第3章详细讨论了热力学质间的关系和热力学质的计算;第4章介绍了剩余质的定义,阐述了多组分混合物的热力学、混合物的实际热力学行为,不同二元混合物的混合摩尔体积、偏摩尔吉布斯能、偏摩尔体积和焓的实验测定,从实验数据计算稀释部分摩尔焓、混合物中组分的吉布斯能和逸度的估计以及偏摩尔吉布斯能和逸度;第5章全面介绍了相平衡判据的数学表达式、化学势和逸度及其在相平衡建模中的应用,讲述了测定液体和固体逸度、分布系数、相对挥发以及热力学一致检验。第5章主要涉及了相平衡的相关定律和方程;第6章解释了热机的不可逆的比率、系统的?变化、?在压缩过程中发生变化、?递减原理与?破坏以及?衡算及?效率;第7章介绍了用简单模型分析制冷循环以及卡诺循环和它在工程中的价值,并对蒸汽和联合动力循环、卡诺蒸汽循环、制冷循环和热泵系统进行了相应的解释;第8章讨论了化学反应平衡基础、化学反应的平衡准则、平衡常数和工艺参数等条件对化学平衡组成的影响。

    《Chemical Engineering Thermodynamics》注重理论原理与实际应用的结合,不仅能够为读者提供丰富的热力学基础知识,还能为经验丰富的化工提供所需的专业知识。本书附有大量的例题,并且都系统地给出了解答步骤。读者能够通过本书迅速获取化工热力学的知识内容,适合自学,同时也是学习和掌握专业英语的高效途径。

    《Chemical Engineering Thermodynamics》(化工热力学)可作为化工及相关专业的生和学习化工热力学的教材,也可供化工专业的过程开发、合成、优化等领域的科研人员参考。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购