萌萌哒图书专营店
  • 扫码下单

  • 全新X线脉冲星导航:原理与应用郑伟,王奕迪9787030647719
  • 正版
    • 作者: 郑伟,王奕迪著 | 郑伟,王奕迪编 | 郑伟,王奕迪译 | 郑伟,王奕迪绘
    • 出版社: 科学出版社
    • 出版时间:2020-06-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    店铺装修中

    商家:
    萌萌哒图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    萌萌哒图书专营店

  • 商品参数
    • 作者: 郑伟,王奕迪著| 郑伟,王奕迪编| 郑伟,王奕迪译| 郑伟,王奕迪绘
    • 出版社:科学出版社
    • 出版时间:2020-06-01
    • 版次:1
    • 印次:1
    • 页数:222
    • 开本:32开
    • ISBN:9787030647719
    • 版权提供:科学出版社
    • 作者:郑伟,王奕迪
    • 著:郑伟,王奕迪
    • 装帧:精装
    • 印次:1
    • 定价:128.00
    • ISBN:9787030647719
    • 出版社:科学出版社
    • 开本:32开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2020-06-01
    • 页数:222
    • 外部编号:1202069668
    • 版次:1
    • 成品尺寸:暂无

    1 Introduction 1

    1.1 Basic Concept of Spacecraft Autonomous Navigation System 1

    1.1.1 Definition of Spacecraft Autonomous Navigation System 1

    1.1.2 Necessity of Autonomous Navigation Systems 1

    1.2 Three Main Types of Spacecraft Autonomous Navigation Systems 3

    1.2.1 Inertial Navigation System 3

    1.2.2 Celestial Navigation System 4

    1.. Navigation Satellite System 6

    1.3 Review of X-Ray Pulsar-Based Navigation 9

    1.3.1 Brief Introduction of Pulsar 9

    1.3.2 Brief Introduction of X-Ray Pulsar-Based Navigation 10

    1.3.3 Famous Programs on XPN 11

    1.3.4 Progresses of Key Techniques 13

    References 22

    2 Fundamential of the X-Ray Pulsar-Based Navigation 25

    2.1 Space-Time Reference Frame 25

    2.1.1 Coordinate System 25

    2.1.2 General Relativistic Time System 27

    2.2 Timing Model 32

    2.2.1 Time and Phase Model 33

    2.2.2 Time Transfer Model 35

    . Spacecraft Orbital Dynamics and Attitude Dynamics Models 37

    ..1 Spacecraft Orbital Dynamics Model 37

    ..2 Spacecraft Attitude Dynamics Model 40

    2.4 X-Ray Pulsar-Based Spacecrafitioning 43

    2.4.1 Basic Principle 43

    2.4.2 Working Flow 45

    2.4.3 Analysis on the X-Ray Detector Configuration Scheme 46

    2.5 X-Ray Pulsar-Based Spacecraft Time Keeping 48

    2.5.1 Basic Principle 48

    2.5.2 System Equation 49

    2.5.3 Feasibility Analysis of Time-Keeping via the Observation of One Pulsar 50

    2.6 X-Ray Pulsar-Based Spacecraft Attitude Determination 52

    2.6.1 Basic Principle 52

    2.6.2 Means of Realizing Direction via the Observation of Pulsar 56

    References 58

    3 X-Ray Pulsar Signal Processing 61

    3.1 X-Ray Pulsar Signal Model 61

    3.2 Profile Recovery 62

    3.2.1 Epoch Folding 62

    3.2.2 Period Search 63

    3.. Enhancing the Signal to Noise Ratio of Profile 68

    3.3 Pulse TOA Calculation for Stationary Case 78

    3.3.1 Pulse TOA Calculation Methods 78

    3.3.2 Performance Analysis 80

    3.4 Pulse TOA Calculation for Dynamics Case 81

    3.4.1 Improved Phase Propagation Model 81

    3.4.2 Linearized Phase Propagation Model 83

    3.4.3 Estimation of Phase and Doppler Frequency 87

    3.4.4 Simulation Analysis 91

    3.5 Data Processing of XPN-1 Data 100

    3.5.1 Introduction of the Measured Data of XPN-1 100

    3.5.2 Data Processing for the Measured Data 101

    3.6 Summary 106

    References 107

    4 Errors Within the Time Transfer Model and Compensation Methods for Earth-Orbing Spacecraft 109

    4.1 Modeling of Error Sources Within Time Transfer Model 109

    4.1.1 Position Error of Central Gravitational Body 110

    4.1.2 Position Error of the Sun 110

    4.1.3 Position Error of Other Celestial Bodies 111

    4.1.4 Angular Position Error of Pulsar 112

    4.1.5 Distance Error of Pulsar 112

    4.1.6 Error Within Proper Motion Velocity of Pulsar 113

    4.1.7 Error Within Spacecraft-Borne Atomic Clock 113

    4.2 Impact of Error Sources 113

    4.2.1 Impact of Error Sources on Time Transfer Model 114

    4.2.2 Impact of Error Source on Template 120

    4.. Impact of Error Source on Positioning Performance 122

    4.3 Analysis of Propagation Property of Major Error Sources 125

    4.3.1 Propagation Property of Planet Ephemeris Errr 25

    4.3.2 Propagation Property of Pulsar Angular Position Errr 29

    4.3.3 Propagation Property of Pulsar Distance Errr 30

    4.3.4 Propagation Property of Clock Error of Spacecraft-Borne Atomic Clock 131

    4.4 Systematic Biases Compensation Method Based on Augmented State 133

    4.4.1 Navigation System 133

    4.4.2 Observability Analysis 135

    4.4.3 Simulation Analysis 138

    4.5 Systematic Biases Compensation Method Based on Time-Differenced Measurement 139

    4.5.1 Time-Differenced Measurement Model 139

    4.5.2 Observability Analysis 139

    4.5.3 Modified Unscented Kalman Filter 141

    4.5.4 Simulation Analysis 144

    4.6 Summary 148

    References 149

    5 X-Ray Pulsar/Multiple Measurement Information Fused Navigation 151

    5.1 XN/CNS Integrated Navigation Framework 151

    5.1.1 Traditional Celestial Measurement Model 152

    5.1.2 Information Fusion Methd 54

    5.1.3 Error Compensation Method Based on Error Separation Principle 159

    5.1.4 Simulation Analysis 161

    5.2 XN/INS Integrated Navigation Framework 167

    5.2.1 Coition of XN/INS Integrated Navigation System 168

    5.2.2 Dynamic Model 169

    5.. Observation Model 169

    5.2.4 Simulation Analysis 170

    5.3 Summary 173

    References 173

    6 Spacecraft Autonomous Navigation Using the X-Ray Pulsar Time Difference of Arrival 175

    6.1 Shortcomings of Autonomous Navigation Using Inter-satellite Link 175

    6.1.1 Inter-satellite Link Ranging Measurement 175

    6.1.2 Mathematical Analysis for Orbit Determination Using Inter-satellite Link Ranging 177

    6.2 System Observation Model and Observability Analysis 180

    6.2.1 Measurement Model for Multiple Spacecraft Observing One Pulsar 180

    6.2.2 Ranging Measurement Using Inter-satellite Link 182

    6.. Observability Analysis 183

    ……

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购