- 商品参数
-
- 作者:
[日]涌井良幸著
- 出版社:人民邮电出版社
- ISBN:9787115509345
- 版权提供:人民邮电出版社
内容介绍
《深度学习的数学》基于丰富的图示和具体示例,通俗易懂地介绍了深度学习相关的数学知识。
第1章介绍神经网络的概况;
第2章介绍理解神经网络所需的数学基础知识;
第3章介绍神经网络的优化;
第4章介绍神经网络和误差反向传播法;
第5章介绍深度学习和卷积神经网络。
书中使用Excel进行理论验证,帮助读者直观地体验深度学习的原理。
● 本书的目的在于提供理解神经网络所需的数学基础知识。为了便于读 者直观地理解,书中使用大量图片,并通过具体示例来介绍。因此, 本书将数学的严谨性放在第二位。
● 深度学习的世界是丰富多彩的,本书主要考虑阶层型神经网络和卷积 神经网络在图像识别中的应用。
● 本书将Sigmoid 函数作为激活函数,除此之外也可以考虑其他函数。 ● 本书以最小二乘法作为数学上的化的基础,除此之外也可以考虑 其他方法。
● 神经网络可分为有监督学习和无监督学习两类。本书主要讲解有监督 学习。
● 人工智能相关的文献之所以难读,其中一个原因就是各文献所用的符 号不统一。本书采用的是相关文献中常用的符号。
● 本书使用Excel 进行理论验证。Excel 是一个非常的工具,能够在 工作表上可视化地展现逻辑,有助于我们理解。因此,相应的项目需 要以Excel 的基础知识为前提。
目录
第 1 章 神经网络的思想
1 - 1 神经网络和深度学习 2
1 - 2 神经元工作的数学表示 6
1 - 3 激活函数:将神经元的工作一般化 12
1 - 4 什么是神经网络 18
1 - 5 用恶魔来讲解神经网络的结构 23
1 - 6 将恶魔的工作翻译为神经网络的语言 31
1 - 7 网络自学习的神经网络 36
第 2 章 神经网络的数学基础
2 - 1 神经网络所需的函数 40
2 - 2 有助于理解神经网络的数列和递推关系式 46
2 - 3 神经网络中经常用到的Σ符号 51
2 - 4 有助于理解神经网络的向量基础 53
2 - 5 有助于理解神经网络的矩阵基础 61
2 - 6 神经网络的导数基础 65
2 - 7 神经网络的偏导数基础 72
2 - 8 误差反向传播法必需的链式法则 76
2 - 9 梯度下降法的基础:多变量函数的近似公式 80
2 - 10 梯度下降法的含义与公式 83
2 - 11 用Excel 体验梯度下降法 91
2 - 12 优化问题和回归分析 94
第3 章 神经网络的*优化
3 - 1 神经网络的参数和变量 102
3 - 2 神经网络的变量的关系式 111
3 - 3 学习数据和正解 114
3 - 4 神经网络的代价函数 119
3 - 5 用Excel体验神经网络 127
第4 章 神经网络和误差反向传播法
4 - 1 梯度下降法的回顾 134
4 - 2 神经单元误差 141
4 - 3 神经网络和误差反向传播法 146
4 - 4 用Excel体验神经网络的误差反向传播法 153
第5 章 深度学习和卷积神经网络
5 - 1 小恶魔来讲解卷积神经网络的结构 168
5 - 2 将小恶魔的工作翻译为卷积神经网络的语言 174
5 - 3 卷积神经网络的变量关系式 180
5 - 4 用Excel体验卷积神经网络 193
5 - 5 卷积神经网络和误差反向传播法 200
5 - 6 用Excel体验卷积神经网络的误差反向传播法 212
附录
A 训练数据(1) 222
B 训练数据(2) 223
C 用数学式表示模式的相似度 225
作者介绍
涌井良幸(作者) 1950年生于东京,毕业于东京教育大学(现筑波大学)数学系,现为自由职业者。著有《用Excel学深度学习》(合著)、《统计学有什么用?》等。
涌井贞美(作者) 1952年生于东京,完成东京大学理学系研究科硕士课程,现为自由职业者。著有《用Excel学深度学习》(合著)、《图解贝叶斯统计入》等。 杨瑞龙(译者) 1982年生,2008年北京大学数学科学学院硕士毕业,软件开发者,从事软件行业10年。2013年~2016年赴日工作3年,从2016年开始在哆嗒数学网公众号发表《数学上下三万年》等多篇翻译作品。
关联推荐
一本书掌握深度学习的数学基础知识
在线试读
前言
近年来,我们在媒体上到处可见人工智能(AI)这个词,而深度学习是人工智能的一种实现方法。下面我们就来简单地看一下深度学习具有怎样划时代的意义。
下面是三张花的图片,它们都具有同一个名字,那究竟是什么呢?
答案是玫瑰。虽然大小和形状都不一样,但这些的确都是玫瑰花的图片。看到玫瑰花的图片,我们理所当然就能辨别出“这是玫瑰花”。
在计算机和数学的世界中,这个玫瑰花的例子属于模式识别问题。人类每天都在进行着模式识别。比如,我们在逛街的时候就会无意识地进行着物体的辨别:“那是电影院”“信号灯是红灯”,等等。换言之,这就是在进行模式识别。
然而,像这样的人类认为很自然的事情,一旦想让机器来做,就变得非常困难。例如,现在让你编写一个模式识别的计算机程序,使其从大量花的图片中单独提取出玫瑰花的图片,你可能就束手无策了。
实际上,关于模式识别的理论创建一直在碰壁。例如,对于玫瑰花的模式识别,以前的逻辑是将“玫瑰是具有这样特征的东西”教给机器,然而效果甚微。因为玫瑰花的形状实在是太多了,即使是相同品种的玫瑰花,其颜色和形状每时每刻也都在发生变化,不同品种的玫瑰花则会有更大的差异。要从如此多样的特征之中得出“玫瑰”这样一个概念,的确是太难了。
后来,一种被称为神经网络的数学方法被研究出来。具体来说,就是将模拟动物的神经细胞的神经元聚集起来形成网络,然后让这个网络去观察大量的玫瑰花的图片,进行“自学习”。相比之前的模式识别逻辑,该方法取得了很大的成功。特别是利用称为卷积神经网络的多层结构的神经网络,甚至可以从图片和视频中识别出人和猫。深度学习就是用具有这种结构的神经网络实现的人工智能。
虽然“自学习”听起来很难,但神经网络运用的数学理论是非常简单的,基本上是比较基础的数学知识。然而,很多文献大量使用公式和专业术语,令人难以看透神经网络的本质,这对于今后人工智能的发展是莫大的不幸和障碍。本书作为人工智能的入书,目的就是要破除这种障碍,让所有人都能够体会到神经网络的趣味性。本书的目标是用初级的数学知识详细地讲解深度学习的思想。
只要从本质上理解了基础知识,就可以在应用中大展身手。但愿本书能够对 21 世纪人工智能的发展有所贡献。
最后,本书从策划到最终出版,得到了技术评论社渡边悦司先生的大力支持,我们借此向他表达深深的谢意。
2017 年春
笔者