由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
正版新书]算法设计与分析(Python版) 微课视频版王秋芬978730257
¥ ×1
第1章算法概述
1.1什么是算法
1.2为什么学习算法
1.3算法的描述方式
1.4算法设计的一般过程
1.5算法分析
1.5.1算法分析的概念
1.5.2时间复杂度和空间复杂度
1.5.3渐近复杂性态
1.5.4渐近意义下的记号
1.5.5算法的运行时间T(n)建立的依据
1.5.6算法所占用的空间S(n)建立的依据
1.6递推方程求解方法
1.6.1迭代法
1.6.2递归树
1.6.3差消法
1.6.4主方法
第2章贪心算法——贪心不足
2.1概述
2.1.1贪心算法的本质
2.1.2贪心算法的基本要素
2.2活动安排问题
2.2.1问题分析——贪心策略
2.2.2算法设计
2.2.3实例构造
2.2.4算法分析
2.2.5Python实战
2.3单源最短路径问题
2.3.1问题分析——贪心策略
2.3.2算法设计
2.3.3实例构造
2.3.4算法分析
2.3.5Python实战
2.4哈夫曼编码
2.4.1问题分析——贪心策略
2.4.2算法设计
2.4.3实例构造
2.4.4算法分析
2.4.5Python实战
2.5最小生成树——Prim算法
2.5.1问题分析——贪心策略
2.5.2算法设计
2.5.3实例构造
2.5.4算法分析
2.5.5Python实战
2.6最小生成树——Kruskal算法
2.6.1问题分析——贪心策略
2.6.2算法设计
2.6.3实例构造
2.6.4算法分析
2.6.5Python实战
2.7背包问题
2.7.1问题分析——贪心策略
2.7.2算法设计
2.7.3实例构造
2.7.4算法分析
2.7.5Python实战
第3章分治算法——分而治之
3.1概述
3.1.1分治算法的本质
3.1.2分治算法的求解步骤
3.2二分查找
3.2.1问题分析——分与治的方法
3.2.2算法设计
3.2.3实例构造
3.2.4算法分析
3.2.5Python实战
3.3选第二大元素
3.3.1问题分析——分与治的方法
3.3.2算法设计
3.3.3实例构造
3.3.4算法分析
3.3.5Python实战
3.4循环赛日程表
3.4.1问题分析——分与治的方法
3.4.2算法设计
3.4.3实例构造
3.4.4算法分析
3.4.5Python实战
3.5合并排序
3.5.1问题分析——分与治的方法
3.5.2算法设计
3.5.3实例构造
3.5.4算法分析
3.5.5Python实战
3.6快速排序
3.6.1问题分析——分与治的方法
3.6.2算法设计
3.6.3实例构造
3.6.4算法分析
3.6.5Python实战
3.7线性时间选择——找第k小问题
3.7.1问题分析——分与治的方法
3.7.2算法设计
3.7.3实例构造
3.7.4算法分析
3.7.5Python实战
第4章动态规划
4.1概述
4.1.1动态规划的基本思想
4.1.2动态规划的求解步骤
4.1.3动态规划的基本要素
4.2矩阵连乘问题
4.2.1问题分析——递归关系
4.2.2算法设计
4.2.3实例构造
4.2.4算法分析
4.2.5Python实战
4.3凸多边形很优三角剖分
4.3.1问题分析——递归关系
4.3.2算法设计
4.3.3实例构造
4.3.4算法分析
4.3.5Python实战
4.4最长公共子序列问题
4.4.1问题分析——递归关系
4.4.2算法设计
4.4.3实例构造
4.4.4算法分析
4.4.5Python实战
4.5加工顺序问题
4.5.1问题分析——递归关系
4.5.2算法设计
4.5.3实例构造
4.5.4算法分析
4.5.5Python实战
4.60-1背包问题
4.6.1问题分析——递归关系
4.6.2算法设计
4.6.3实例构造
4.6.4算法分析
4.6.5算法的改进
4.6.6Python实战
4.7很优二叉查找树
4.7.1问题分析——递归关系
4.7.2算法设计
4.7.3实例构造
4.7.4算法分析
4.7.5Python实战
第5章回溯法——深度优先搜索
5.1概述
5.2典型的解空间结构
5.2.1子集树
5.2.2排列树
5.2.3满m叉树
5.30-1背包问题——子集树
5.3.1问题分析——解空间及搜索条件
5.3.2算法设计
5.3.3实例构造
5.3.4算法的改进
5.3.5算法分析
5.3.6Python实战
5.4优选团问题——子集树
5.4.1问题分析——解空间及搜索条件
5.4.2算法设计
5.4.3实例构造
5.4.4算法分析
5.4.5Python实战
5.5批处理作业调度问题——排列树
5.5.1问题分析——解空间及搜索条件
5.5.2算法设计
5.5.3实例构造
5.5.4算法分析
5.5.5Python实战
5.6旅行商问题——排列树
5.6.1问题分析——解空间及搜索条件
5.6.2算法设计
5.6.3实例构造
5.6.4算法分析
5.6.5Python实战
5.7图的m着色问题——满m叉树
5.7.1问题分析——解空间及搜索条件
5.7.2算法设计
5.7.3实例构造
5.7.4算法分析
5.7.5Python实战
5.8最小质量机器设计问题——满m叉树
5.8.1问题分析——解空间及搜索条件
5.8.2算法设计
5.8.3实例构造
5.8.4算法分析
5.8.5Python实战
第6章分支限界法——宽度优先或最小耗费(优选效益)优先搜索
6.1分支限界法的基本思想
6.20-1背包问题
6.3旅行商问题
6.4布线问题
6.4.1问题分析——解空间及搜索条件
6.4.2算法设计
6.4.3实例构造
6.4.4算法分析
6.4.5Python实战
6.5分支限界法与回溯法的比较
第7章线性规划问题与网络流
7.1线性规划问题
7.1.1一般线性规划问题的描述
7.1.2标准型线性规划问题的描述
7.1.3标准型线性规划问题的单纯形算法
7.2优选网络流
7.2.1基本概念
7.2.2增广路算法
7.2.3优选网络流的变换与应用
7.3最小费用优选流
7.3.1基本概念
7.3.2消圈算法
7.3.3最小费用优选流的变换与应用
第8章随机化算法
8.1概述
8.1.1随机化算法的类型及特点
8.1.2随机数发生器
8.2数值随机化算法
8.2.1计算π的值
8.2.2计算定积分
8.3蒙特卡罗算法
8.3.1主元素问题
8.3.2素数测试
8.4拉斯维加斯算法
8.4.1整数因子分解
8.4.2n皇后问题
8.5舍伍德算法
8.5.1随机快速排序
8.5.2线性时间选择
第9章NP接近理论
9.1易解问题和难解问题
9.2P类和NP类问题
9.2.1P类问题
9.2.2NP类问题
9.2.3P类问题和NP类问题的关系
9.3NP接近问题
9.3.1多项式变换技术
9.3.2典型的NP接近问题
9.4NP接近问题的近似算法
9.4.1顶点覆盖问题
9.4.2装箱问题
9.4.3旅行商问题TSP
9.4.4集合覆盖问题
参考文献
王秋芬,女,1978-,硕士研究生,副教授。研究方向为计算机软件理论、算法、大数据,主讲《操作系统》、《数据结构》、《算法设计与分析》等课程。从教以来,获校级教学技能竞赛一等奖、省级教学技能竞赛二等奖;以作者发表论文20余篇,出版《算法设计与分析》、《算法设计艺术》等3部著作;主持、参与省级项目6项,主持课程与教材建设项目5项;获省部级以上奖励5项;已获授权国家发明4项。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格