返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版新书]Hive性能调优实战林志煌9787111644323
  • 全店均为全新正版书籍,欢迎选购!新疆西藏青海(可包挂刷).港澳台及海外地区bu bao快递
    • 作者: 林志煌著 | 林志煌编 | 林志煌译 | 林志煌绘
    • 出版社: 机械工业出版社
    • 出版时间:2020-01-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    君凤文轩图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 林志煌著| 林志煌编| 林志煌译| 林志煌绘
    • 出版社:机械工业出版社
    • 出版时间:2020-01-01
    • 版次:1
    • 印次:1
    • 字数:400
    • 页数:296
    • 开本:16开
    • ISBN:9787111644323
    • 版权提供:机械工业出版社
    • 作者:林志煌
    • 著:林志煌
    • 装帧:平装
    • 印次:1
    • 定价:89
    • ISBN:9787111644323
    • 出版社:机械工业出版社
    • 开本:16开
    • 印刷时间:暂无
    • 语种:中文
    • 出版时间:2020-01-01
    • 页数:296
    • 外部编号:党庄A199524
    • 版次:1
    • 成品尺寸:暂无

    前言

    章 举例感受Hive性能调优的多样性 1

    1.1 感受改写SQL对性能的影响 1

    1.1.1 数据准备 1

    1.1.2 union案例 4

    1.1.3 改写SQL实现union的优化 5

    1.1.4 失败的union调优 8

    1.2 感受调整数据块大小对性能的影响 10

    1.2.1 数据准备 11

    1.2.2 案例比较 11

    1.3 感受不同数据格式对性能的提升 15

    1.3.1 数据准备 15

    1.3.2 案例比较 16

    1.4 感受不同的表设计对性能的影响 18

    1.4.1 数据准备 19

    1.4.2 案例比较 21

    1.5 调优其实不难 24

    第2章 Hive问题排查与调优思路 25

    2.1 小白推演Hive的优化方法 25

    2.1.1 类比关系型数据库的调优 25

    2.1.2 学习大数据分布式计算的基本原理 28

    2.1.3 学习使用YARN提供的日志 31

    2.1.4 干预SQL的运行方式 33

    2.2 老工对Hive的调优理解 36

    2.2.1 从一个过度优化案例说起 36

    2.2.2 编码和调优的原则 43

    2.2.3 Hive程序相关规范 49

    2.3 总结调优的一般性过程 51

    第3章 环境搭建 53

    3.1 Docker基础 53

    3.1.1 Docker介绍 54

    3.1.2 安装Docker 56

    3.1.3 常见的Docker使用与管理命令 58

    3.1.4 使用Dockerfile构建服务镜像 60

    3.1.5 Dockerfile语法 63

    3.2 Cloudera Docker搭建伪分布式环境 66

    3.3 Docker搭建分布式集群 68

    3.3.1 构建JDK镜像 69

    3.3.2 构建Hadoop镜像 70

    3.3.3 构建Hive镜像 72

    3.3.4 启动集群 73

    3.4 CDM搭建分布式集群 75

    3.4.1 Cloudera Manager组件 75

    3.4.2 Docker构建软件安装内部源 76

    3.4.3 CDM安装分布式集群 79

    3.5 使用GitHub开源项目构建集群 87

    第4章 Hive及其相关大数据组件 89

    4.1 Hive架构 89

    4.1.1 Hive 1.x版本基本结构 89

    4.1.2 Hive元数据 91

    4.2 YARN组件 97

    4.2.1 YARN的优点 97

    4.2.2 YARN基本组成 97

    4.2.3 YARN工作流程 99

    4.2.4 YARN资源调度器 100

    4.3 HDFS架构 102

    4.3.1 常见HDFS优化 102

    4.3.2 HDFS基本架构和读写流程 103

    4.3.3 HDFS高可用架构 105

    4.3.4 NameNode联盟 107

    4.4 计算引擎 109

    4.4.1 MapReduce计算引擎 109

    4.4.2 Tez计算引擎 111

    4.4.3 LLAP长时在线与处理程序 113

    4.4.4 Spark计算引擎 115

    第5章 深入MapReduce计算引擎 117

    5.1 MapReduce整体处理过程 117

    5.2 MapReduce作业输入 118

    5.2.1 输入格式类InputFormat 118

    5.2.2 InputFormat在Hive中的使用 120

    5.3 MapReduce的Mapper 121

    5.3.1 Mapper类 121

    5.3.2 Hive中与Mapper相关的配置 123

    5.4 MapReduce的Reducer 125

    5.4.1 Reducer类 126

    5.4.2 Hive中与Reducer相关的配置 127

    5.5 MapReduce的Shuffle 128

    5.6 MapReduce的Map端聚合 129

    5.6.1 Combiner类 129

    5.6.2 Map端的聚合与Hive配置 130

    5.7 MapReduce作业输出 131

    5.7.1 OutputFormat作业输出 132

    5.7.2 Hive配置与作业输出 133

    5.8 MapReduce作业与Hive配置 134

    5.9 MapReduce与Tez对比 135

    5.9.1 通过案例代码对比MapReduce和Tez 135

    5.9.2 Hive中Tez和LLAP相关的配置 141

    第6章 HiveSQL执行计划 143

    6.1 查看SQL的执行计划 143

    6.1.1 查看执行计划的基本信息 144

    6.1.2 查看执行计划的扩展信息 148

    6.1.3 查看SQL数据输入依赖的信息 148

    6.1.4 查看SQL操作涉及的相关权限信息 152

    6.1.5 查看SQL的向量化描述信息 152

    6.2 简单SQL的执行计划解读 158

    6.3 带普通函数/操作符SQL的执行计划解读 161

    6.3.1 执行计划解读 161

    6.3.2 普通函数和操作符 162

    6.4 带聚合函数的SQL执行计划解读 164

    6.4.1 在Reduce阶段聚合的SQL 164

    6.4.2 在Map和Reduce阶段聚合的SQL 167

    6.4.3 不错分组聚合 169

    6.5 带窗口/分析函数的SQL执行计划解读 172

    6.6 表连接的SQL执行计划解读 175

    6.6.1 Hive表连接的类型 175

    6.6.2 内连接和外连接 176

    6.6.3 左半连接 178

    第7章 Hive数据处理模式 181

    7.1 过滤模式 181

    7.1.1 where子句过滤模式 182

    7.1.2 having子句过滤 183

    7.1.3 distinct子句过滤 184

    7.1.4 表过滤 186

    7.1.5 分区过滤 188

    7.1.6 分桶过滤 189

    7.1.7 索引过滤 191

    7.1.8 列过滤 191

    7.2 聚合模式 192

    7.2.1 distinct模式 193

    7.2.2 count(列)、count(*)、count(1)行计数聚合模式 194

    7.2.3 可计算中间结果的聚合模式 197

    7.2.4 不可计算中间结果的聚合模式 199

    7.3 连接模式 200

    7.3.1 普通Map连接 201

    7.3.2 桶的Map连接和排序合并桶的Map连接 207

    7.3.3 倾斜连接 209

    7.3.4 表连接与基于成本的优化器 210

    第8章 YARN日志 212

    8.1 查看YARN日志的方式 212

    8.1.1 ResourceManager Web UI界面 212

    8.1.2 JobHistory Web UI界面 215

    8.2 快速查看集群概况 216

    8.2.1 Cluster Metrics集群度量指标 217

    8.2.2 Cluster Node Metrics集群节点的度量信息 218

    8.2.3 Cluster Overview集群概况 220

    8.3 查看集群节点概况 221

    8.3.1 节点列表概况 221

    8.3.2 节点详细信息 223

    8.3.3 节点作业信息 224

    8.4 查看集群的队列调度情况 226

    8.5 查看集群作业运行信息 230

    8.5.1 集群作业运行状态 230

    8.5.2 查看作业运行的基本信息 231

    8.5.3 查看作业计数器 232

    第9章 数据存储 236

    9.1 文件存储格式之Apache ORC 236

    9.1.1 ORC的结构 237

    9.1.2 ORC的数据类型 238

    9.1.3 ACID事务的支持 240

    9.2 与ORC相关的Hive配置 241

    9.2.1 表配置属性 241

    9.2.2 Hive表的配置属性 241

    9.3 文件存储格式之Apache Parquet 242

    9.3.1 Parquet基本结构 243

    9.3.2 Parquet的相关配置 245

    9.4 数据归档 245

    0章 发现并优化Hive中的性能问题 247

    10.1 监控Hive数据库的状态 247

    10.2 监控当前集群状态 253

    10.3 定位性能瓶颈 258

    10.3.1 使用HS2 WebUI排除非大数据组件的问题 258

    10.3.2 排查长时等待调度 260

    10.3.3 Map任务读取小文件和大文件 261

    10.3.4 Reduce的数据倾斜 262

    10.3.5 缓慢的Shuffle 264

    10.3.6 集群资源的限制 265

    10.4 数据倾斜 266

    10.4.1 不可拆分大文件引发的数据倾斜 266

    10.4.2 业务无关的数据引发的数据倾斜 267

    10.4.3 多维聚合计算数据膨胀引起的数据倾斜 268

    10.4.4 无法削减中间结果的数据量引发的数据倾斜 268

    10.4.5 两个Hive数据表连接时引发的数据倾斜 269

    1章 Hive知识体系总结 270

    11.1 Hive知识体系 270

    11.2 数据粒度 271

    11.3 SQL相关 275

    11.3.1 select查询语句 276

    11.3.2 数据定义语言(DDL) 276

    11.3.3 数据控制语言(DML) 279

    11.3.4 用户自定义函数(UDF) 280

    11.4 文件操作 281

    林志煌,曾在中国互联网头部公司长期从事大数据相关项目的研发。擅长并能够熟练使用Hive、MapReduce和Spark等大数据相关技术。经手过日数据流量TB级别和总量PB级别的Hadoop大数据平台建设。从事过数据采集、数据清洗、数据仓库模型构建及数据产品研发等工作,涵盖了数据生命周期的主要阶段。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购