返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版新书]人工智能安全曾剑平9787302611509
  • 全店均为全新正版书籍,欢迎选购!新疆西藏青海(可包挂刷).港澳台及海外地区bu bao快递
    • 作者: 曾剑平著 | 曾剑平编 | 曾剑平译 | 曾剑平绘
    • 出版社: 清华大学音像出版社
    • 出版时间:2022-08-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    君凤文轩图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 曾剑平著| 曾剑平编| 曾剑平译| 曾剑平绘
    • 出版社:清华大学音像出版社
    • 出版时间:2022-08-01
    • 版次:1
    • 印次:1
    • 开本:其他
    • ISBN:9787302611509
    • 版权提供:清华大学音像出版社
    • 作者:曾剑平
    • 著:曾剑平
    • 装帧:平装
    • 印次:1
    • 定价:59
    • ISBN:9787302611509
    • 出版社:清华大学
    • 开本:其他
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2022-08-01
    • 页数:0
    • 外部编号:小坞103985
    • 版次:1
    • 成品尺寸:暂无


    第一部分人工智能的安全观

    第1章人工智能安全概述

    1.1什么是人工智能安全

    1.2人工智能安全问题与脆弱性

    1.2.1人工智能及其安全问题的出现

    1.2.2人工智能安全的层次结构

    1.2.3人工智能的脆弱性

    1.3人工智能安全的基本属性

    1.4人工智能安全的技术体系

    1.4.1人工智能安全的数据处理

    1.4.2人工智能用于网络安全攻击与防御

    1.4.3人工智能对抗攻击与防御

    1.4.4机器学习隐私攻击与保护

    1.4.5人工智能安全治理技术

    1.4.6人工智能平台安全

    1.5人工智能安全的数学基础

    1.6人工智能安全的相关法律与规范

    1.7人工智能安全的发展趋势

    第二部分人工智能安全的数据处理

    第2章非平衡数据分类

    2.1数据非平衡现象与影响

    2.2非平衡数据分类方法

    2.2.1数据欠采样

    2.2.2数据过采样

    2.2.3数据组合采样

    2.2.4特征层的不平衡数据分类

    2.2.5算法层的非平衡数据分类

    2.3非平衡数据分类方法的实现

    第3章噪声数据处理

    3.1噪声的分类、产生原因与影响

    3.2噪声处理的理论与方法

    3.3基于数据清洗的噪声过滤

    3.4主动式噪声迭代过滤

    3.5噪声鲁棒模型

    3.5.1错误样本权重调整

    3.5.2损失函数设计

    第4章小样本学习方法

    4.1小样本学习基础

    4.1.1小样本学习的类型

    4.1.2小样本学习与其他机器学习的关系

    4.1.3小样本学习的PAC理论

    4.1.4小样本学习方法体系

    4.2小样本的数据增强方法

    4.3基于模型的小样本学习

    4.3.1多任务学习

    4.3.2嵌入学习

    4.3.3生成式模型

    4.4基于算法的小样本学习

    4.5小样本学习的相关资源


    第三部分人工智能用于网络安全的攻击与防御

    第5章基于机器学习的安全检测

    5.1网络入侵检测

    5.1.1概述

    5.1.2数据集

    5.1.3数据预处理

    5.1.4特征工程

    5.1.5在天池AI平台上的开发

    5.1.6入侵检测的棘手问题

    5.2SQL注入检测

    5.2.1概述

    5.2.2SQL注入方法

    5.2.3SQL注入的检测方法

    5.2.4SQL语句的特征提取

    5.2.5在天池AI平台上的开发

    5.3虚假新闻检测

    5.3.1概述

    5.3.2基于统计学习的检测

    5.3.3基于多任务学习的检测

    5.3.4有待人工智能解决的问题

    第6章攻击与防御的智能技术

    6.1概述

    6.2攻击图简介

    6.2.1攻击图的基本概念

    6.2.2攻击图生成方法

    6.2.3攻击图的计算任务

    6.3基于图论的方法

    6.3.1图的路径算法

    6.3.2图节点排序算法

    6.4基于贝叶斯网络的方法

    6.5基于马尔可夫理论的方法

    6.5.1马尔可夫链

    6.5.2马尔可夫决策过程

    6.5.3隐马尔可夫模型

    6.5.4部分可观测马尔可夫决策过程

    6.6基于博弈论的方法

    6.7攻击图智能技术的发展趋势

    第四部分人工智能模型的对抗攻击与防御

    第7章机器学习系统的攻击者

    7.1从垃圾邮件检测谈起

    7.2机器学习系统的漏洞

    7.3攻击者及其目的

    7.4知识及攻击者能力

    7.4.1知识

    7.4.2攻击者能力

    7.5攻击者的代价与收益

    7.6攻击行为与分类

    7.6.1攻击行为

    7.6.2攻击行为分类

    第8章对抗攻击的理论与方法

    8.1对抗样本与方法

    8.1.1对抗样本及其存在性

    8.1.2对抗样本生成方法概述

    8.2对抗样本生成方法

    8.2.1基于梯度的方法

    8.2.2基于优化的方法

    8.2.3ZOO对抗样本生成

    8.2.4决策树对抗样本生成

    8.2.5普适扰动对抗样本生成

    8.2.6基于生成对抗网络的生成方法

    第9章典型的对抗攻击方法

    9.1投毒攻击

    9.1.1投毒攻击场景

    9.1.2投毒攻击的原理

    9.1.3基于天池AI的SVM投毒实现

    9.1.4手写数字分类器的投毒

    9.2后门攻击

    9.3逃避攻击

    9.3.1逃避攻击场景

    9.3.2逃避攻击原理

    9.3.3手写数字识别的逃避攻击

    9.4迁移攻击

    9.5自然语言对抗样本生成

    9.5.1自然语言对抗攻击的场景

    9.5.2文本情感分类的逃避攻击

    9.5.3原文本的对抗样本生成

    9.5.4伪文本生成

    9.6口令对抗网络样本生成

    9.6.1PassGAN设计原理

    9.6.2PassGAN的应用

    第10章机器学习系统的隐私安全

    10.1概述

    10.2机器学习模型的隐私

    10.3隐私保护技术基础

    10.3.1隐私及其度量

    10.3.2匿名化及其攻击

    10.3.3差分隐私

    10.3.4同态加密

    10.4大数据隐私攻击与保护

    10.4.1关系型数据隐私保护

    10.4.2位置隐私保护

    10.4.3社交网络隐私保护

    10.5隐私计算架构

    10.5.1安全多方计算

    10.5.2联邦学习

    10.6典型应用中的隐私保护

    10.6.1LBS推荐中的隐私保护

    10.6.2苹果手机中的差分隐私

    第11章聚类模型的攻击

    11.1聚类攻击场景

    11.2聚类算法的攻击模型

    11.2.1攻击者的目标

    11.2.2攻击者的知识

    11.2.3攻击者的能力

    11.2.4攻击方式

    11.2.5攻击性能评价

    11.3聚类算法的攻击方法

    11.3.1桥接攻击

    11.3.2扩展攻击

    11.4天池AI上的聚类攻击实现

    11.4.1桥接攻击

    11.4.2扩展攻击

    第12章对抗攻击的防御方法

    12.1防御技术概况

    12.2数据层的防御

    12.3模型层

    12.3.1正则化

    12.3.2蒸馏网络

    12.4算法层的防御

    12.4.1对抗训练

    12.4.2防御蒸馏

    12.4.3算法鲁棒性增强

    第五部分人工智能平台的安全与工具

    第13章机器学习平台的安全

    13.1机器学习平台漏洞

    13.1.1机器学习平台自身的漏洞

    13.1.2依赖库漏洞

    13.2TensorFlow的模型安全

    13.2.1TensorFlow的模型机制与使用

    13.2.2TensorFlow的模型风险与攻击

    13.2.3安全措施

    第14章阿里云天池AI学习平台与实验

    14.1阿里云天池AI学习平台

    14.2本书实训案例介绍

    14.3配置与使用

    14.3.1Adversarial Robustness Toolbox

    14.3.2使用方法

    14.4实验案例的说明


    【前言】


    在-阿里云产学合作协同育人项目的支持下,本书结合大数据驱动的人工智能发展背景,对人工智能安全理论与实践技术进行了全面梳理。本书作为一本产学兼顾的教材,具有如下特色:1. 围绕大数据驱动的人工智能发展背景,充分考虑数据在人工智能中的重要性,提炼出人工智能数据安全的相关技术。把网络空间安全智能防御的数据处理、人工智能模型训练阶段数据安全、推理阶段数据安全以及数据角度的防御技术,作为知识体系的主干。2. 从网络空间安全攻击与防御的视角来组织人工智能模型算法的安全技术知识体系。人工智能模型算法安全仍然符合网络空间安全的基本特征和规律,这种知识体系的安排充分体现了两个学科方向的内在联系,有利于读者更深入地理解人工智能安全。3. 既注重人工智能安全的相关理论,也强调实践技术的掌握。人工智能安全涉及到大量模型和算法,并需要一定的线性代数、数学分析等基础理论。除此之外,不论是人工智能本身的安全或是人工智能用于解决安全问题,都具有很强的实践要求。


    【内容简介】


    本书对人工智能安全的理论与实践技术进行了梳理,全面完整地覆盖了人工智能安全技术的主要方面,把相关知识体系划分为五部分,即人工智能的安全观、人工智能安全的数据处理、人工智能用于网络安全的攻击与防御、人工智能模型的对抗攻击与防御以及人工智能平台的安全与工具。第一部分对人工智能安全问题、基本属性、技术体系等进行了归纳梳理。第二部分介绍人工智能安全数据处理的三个主要方法,即非平衡数据分类、噪声数据处理和小样本学习方法。第三部分从人工智能技术赋能网络空间安全的攻击与防御问题角度出发,从三个典型实例及攻击图的角度介绍典型人工智能方法在攻击与防御中的应用。第四部分围绕机器学习模型的安全问题,对攻击者、对抗攻击的理论与方法、典型的对抗攻击方法、隐私安全、聚类模型的攻击以及对抗攻击的防御方法进行了梳理。第五部分介绍人工智能平台的安全与工具,以及基于阿里云天池AI学习平台的若干案例与实验。 本书可以作为高等院校网络空间安全、人工智能、大数据、计算机以及电子信息等相关专业研究生和高年级本科生的教材,也可以作为网络空间安全、人工智能安全、大数据、计算机等领域研究人员、专业技术人员和管理人员的参考书。


    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购