返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版 解析数论--2002年在意大利切特拉罗举行的C.I.M.E暑期班演讲
  • 新华书店旗下自营,正版全新
    • 作者: (加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基著 | (加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基编 | (加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基译 | (加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基绘
    • 出版社: 哈尔滨工业大学出版社
    • 出版时间:2019-06
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    美阅书店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: (加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基著| (加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基编| (加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基译| (加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基绘
    • 出版社:哈尔滨工业大学出版社
    • 出版时间:2019-06
    • 版次:1
    • 印次:1
    • 字数:395000
    • 页数:216
    • 开本:24开
    • ISBN:9787560386683
    • 版权提供:哈尔滨工业大学出版社
    • 作者:(加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基
    • 著:(加)J.B.弗里德兰//(英)D.R.夏布朗//(美)H.伊万涅//(波兰)J.卡丘罗夫斯基
    • 装帧:平装
    • 印次:1
    • 定价:68.00
    • ISBN:9787560386683
    • 出版社:哈尔滨工业大学出版社
    • 开本:24开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2019-06
    • 页数:216
    • 外部编号:9869052
    • 版次:1
    • 成品尺寸:暂无

    Producing Prime Numbers via Sieve Methods
    John B. Friedlander
    1 "Classical" sieve methods
    2 Sieves with cancellation
    3 Primes of the form X2 ~ y4
    4 Asymptotic sieve for primes
    5 Conclusion
    References
    Counting Rational Points on Algebraic Varieties
    D. R. Heath-Brown
    1 First lecture. A survey of Diophantine equations
    1.1 Introduction
    1.2 Examples
    1.3 The heuristic bounds
    1.4 Curves
    1.5 Surfaces
    1.6 Higher dimensions
    2 Second lecture. A survey of results
    2.1 Early approaches
    2.2 The method of Bombieri and Pila
    2.3 Projective curves
    2.4 Surfaces
    2.5 A general result
    2.6 Affine problems
    3 Third lecture. Proof of Theorem 14
    3.1 Singular points
    3.2 The Implicit Function Theorem
    3.3 Vanishing determinants of monomials
    3.4 Completion of the proof
    4 Fourth lecture. Rational points on projective surfaces
    4.1 Theorem 6 - Plane sections
    4.2 Theorem 6 - Curves of degree 3 or more
    4.3 Theorem 6 - Quadratic curves
    4.4 Theorem 8 - Large solutions
    4.5 Theorem 8 - Inequivalent representations
    4.6 Theorem 8 - Points on the surface E = 0
    5 Fifth lecture. Affine varieties
    5.1 Theorem 15 - The exponent set ε
    5.2 Completion of the proof of Theorem 15
    5.3 Power-free values of polynomials
    6 Sixth lecture. Sums of powers, and parameterizations
    6.1 Theorem 13 - Equal sums of two powers
    6.2 Parameterization by elliptic functions
    6.3 Sums of three powers
    References
    Conversations on the Exceptional Character
    Henryk Iwaniec
    1 Introduction
    2 The exceptional character and its zero
    3 How was the class number problem solved?
    4 How and why do the central zeros work?
    5 What if the GRH holds except for real zeros?
    6 Subnormal gaps between critical zeros
    7 Fifty percent is not enough!
    8 Exceptional primes
    9 The least prime in an arithmetic progression
    9.1 Introduction
    9.2 The case with an exceptional character
    9.3 A parity-preserving sieve inequality
    9.4 Estimation of ψx(x;q,a)
    9.5 Conclusion
    9.6 Appendix. Character sums over triple-primes
    References
    Axiomatic Theory of L-Functions: the Selberg Class
    Yerzy Kaczorowski
    1 Examples of L-functions
    1.1 Riemann zeta-function and Dirichlet L-functions
    1.2 Hecke L-functions
    1.3 Artin L-functions
    1.4 GL2 L-functions
    1.5 Representation theory and general automorphic L-functions
    2 The Selberg class: basic facts
    2.1 Definitions and initial remarks
    2.2 The simplest converse theorems
    2.3 Euler product
    2.4 Factorization
    2.5 Selberg conjectures
    3 Functional equation and invariants
    3.1 Uniqueness of the functional equation
    3.2 Transformation formulae
    3.3 Invariants
    4 Hypergeometric functions
    4.1 Gauss hypergeometric function
    4.2 Complete and incomplete Fox hypergeometric functions
    4.3 The first special case: p = 0
    4.4 The second special case: μ > 0
    5 Non-linear twists
    5.1 Meromorphic continuation
    5.2 Some consequences
    6 Structure of the Selberg class: d = 1
    6.1 The case of the extended Selberg class
    6.2 The case of the Selberg class
    7 Structure of the Selberg class: 1 < d < 2
    7.1 Basic identity
    7.2 Fourier transform method
    7.3 Rankin-Selberg convolution
    7.4 Non existence of L-functions of degrees 1 < d < 5/3
    7.5 Dulcis in fundo
    References
    编辑手记


    本书主要介绍分析数论中前沿成果的论文, Heath-Brown的讲义主要介绍了计算丢番图方程的整数解,并阐述了代数几何和数字几何的相关应用;Iwaniec的论文,介绍了西格尔零点理论和L-函数特殊性质的相关推广,并给出了关于算术级数中最小素数的Linnik定理的新证明;Kaczorowski的文章,介绍了Selberg引入的L-函数理论的最新研究成果。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购