返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版 Quantitative physiology定量生理学 陈尚宾,[俄]阿列克谢·
  • 新华书店旗下自营,正版全新
    • 作者: 陈尚宾,[俄]阿列克谢·扎伊金著 | 陈尚宾,[俄]阿列克谢·扎伊金编 | 陈尚宾,[俄]阿列克谢·扎伊金译 | 陈尚宾,[俄]阿列克谢·扎伊金绘
    • 出版社: 华中科技大学出版社
    • 出版时间:2019-01-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    美阅书店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品参数
    • 作者: 陈尚宾,[俄]阿列克谢·扎伊金著| 陈尚宾,[俄]阿列克谢·扎伊金编| 陈尚宾,[俄]阿列克谢·扎伊金译| 陈尚宾,[俄]阿列克谢·扎伊金绘
    • 出版社:华中科技大学出版社
    • 出版时间:2019-01-01
    • 版次:1
    • 印次:1
    • 字数:678.0
    • 页数:237
    • 开本:16开
    • ISBN:9787568066785
    • 版权提供:华中科技大学出版社
    • 作者:陈尚宾,[俄]阿列克谢·扎伊金
    • 著:陈尚宾,[俄]阿列克谢·扎伊金
    • 装帧:平装
    • 印次:1
    • 定价:138.00
    • ISBN:9787568066785
    • 出版社:华中科技大学出版社
    • 开本:16开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2019-01-01
    • 页数:237
    • 外部编号:11015042
    • 版次:1
    • 成品尺寸:暂无

    Part I Applied Methodology
    1 Introduction to Quantitative Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
    1.1 Understanding Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
    1.2 Towards Quantitative Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
    1.3 FromGenome to Physiome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
    1.4 Dealing with Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
    1.5 Why It Is Timely to Study Quantitative Physiology . . . . . . . . . . . . . . . . . . . . 6
    1.5.1 Multi-Omic Revolution in Biology . . . . . . . . . . . . . . . . . . . . . . . . . . 6
    1.5.2 Big Data and PersonalisedMedicine . . . . . . . . . . . . . . . . . . . . . . . . . 7
    1.5.3 Genetic Editing and Synthetic Biology . . . . . . . . . . . . . . . . . . . . . . . 8
    1.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
    2 Systems and Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
    2.1 Modelling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
    2.2 Physiological Organ Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
    2.3 EquationModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
    2.4 Using ODEs in Modelling Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
    2.4.1 Modelling Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
    2.4.2 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
    2.4.3 Solving ODEs with the δ-Function . . . . . . . . . . . . . . . . . . . . . . . . . . 17
    2.5 Conservation Laws in Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
    2.5.1 Conservation ofMomentumand Energy . . . . . . . . . . . . . . . . . . . . . . 18
    2.5.2 Boxing With and Without Gloves . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
    2.5.3 RotationalMovement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
    2.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
    3 Introduction to Basic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
    3.1 Building a SimpleMathematicalModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
    3.1.1 Model of Falling Flea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
    3.1.2 Scaling Arguments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
    3.1.3 Example: How High Can an Animal Jump? . . . . . . . . . . . . . . . . . . . 25
    3.1.4 Example: How Fast Can we Walk before Breaking into a Run? . . . 25
    3.2 Models that InvolveMetabolic Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
    3.2.1 Modelling Metabolic Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
    3.2.2 Example:Why do Large Birds find it Harder to Fly? . . . . . . . . . . . 27
    3.2.3 Ludwig von Bertalanffys GrowthModel . . . . . . . . . . . . . . . . . . . . 28
    3.3 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
    Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
    xv
    xvi Contents
    4 Modelling Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
    4.1 Open Courses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
    4.2 Modelling Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
    4.3 Model Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
    4.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
    Part II Basic Case Studies
    5 Modelling Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
    5.1 Modelling Transcriptional Regulation and Simple Networks . . . . . . . . . . . . . 39
    5.1.1 Basic Notions and Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
    5.1.2 Equations for Transcriptional Regulation . . . . . . . . . . . . . . . . . . . . . 39
    5.1.3 Examples of Some Common Genetic Networks . . . . . . . . . . . . . . . . 41
    5.2 Simultaneous Regulation by Inhibition and Activation . . . . . . . . . . . . . . . . . . 42
    5.3 Autorepressor with Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
    5.4 Bistable Genetic Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
    5.5 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
    6 Metabolic Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
    6.1 Metabolismand Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
    6.2 ConstructingMetabolic Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
    6.3 Flux Balance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
    6.4 MyocardialMetabolic Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
    6.5 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
    7 Calcium Signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
    7.1 Functions of Calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
    7.2 Calcium Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
    7.3 CalciumWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
    7.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
    8 Modelling Neural Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
    8.1 Introduction to Brain Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
    8.2 The Hodgkin–Huxley Model of Neuron Firing . . . . . . . . . . . . . . . . . . . . . . . . 62
    8.3 The FitzHugh–Nagumo Model: A Model of the HH Model . . . . . . . . . . . . . 63
    8.3.1 Analysis of Phase Plane with Case Ia = 0 . . . . . . . . . . . . . . . . . . . . 63
    8.3.2 Case Ia > 0 and Conditions to Observe a Limit Cycle . . . . . . . . . . 64
    8.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
    9 Blood Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
    9.1 Blood Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
    9.1.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
    9.1.2 Poiseuilles Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
    9.2 Properties of Blood and ESR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
    9.3 Elasticity of Blood Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
    9.4 The PulseWave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
    9.5 Bernoullis Equation and What Happened to Arturo Toscanini in 1954 . . . . 70
    9.6 The Korotkoff Sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
    9.7 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
    Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
    Contents xvii
    10 Bone and Body Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
    10.1 Elastic Deformations and the Hookes Law. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
    10.2 Why Long Bones are Hollow or Bending of Bones . . . . . . . . . . . . . . . . . . . . 74
    10.3 Viscoelasticity of Bones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
    10.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
    Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
    Part III Complex Applications
    11 Constructive Effects of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
    11.1 Influence of Stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
    11.2 Review of Noise-Induced Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
    11.3 NewMechanisms of Noise-Induced Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 91
    11.4 Noise-Induced Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
    11.4.1 Stochastic Resonance in Bone Remodelling as a Tool to Prevent
    Bone Loss in Osteopenic Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 93
    11.4.2 Transitions in the Presence of Additive Noise and On-Off
    Intermittency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
    11.4.3 Phase Transitions Induced by Additive Noise. . . . . . . . . . . . . . . . . . 103
    11.4.4 Noise-Induced Excitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
    11.5 Doubly Stochastic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
    11.5.1 Doubly Stochastic Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
    11.5.2 A Simple Electronic Circuit Model for Doubly Stochastic
    Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
    11.5.3 Doubly Stochastic Coherence: Periodicity via Noise-Induced
    Symmetry in Bistable NeuralModels . . . . . . . . . . . . . . . . . . . . . . . . 120
    11.6 New Effects in Noise-Induced Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
    11.6.1 Noise-Induced Propagation in Monostable Media . . . . . . . . . . . . . . 125
    11.6.2 Noise-Induced Propagation and Frequency Selection of
    Bichromatic Signals in BistableMedia . . . . . . . . . . . . . . . . . . . . . . . 128
    11.7 Noise-Induced Resonant Effects and Resonant Effects in the Presence of
    Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
    11.7.1 Vibrational Resonance in a Noise-Induced Structure . . . . . . . . . . . . 129
    11.7.2 System Size Resonance in Coupled Noisy Systems . . . . . . . . . . . . . 133
    11.7.3 Coherence Resonance and Polymodality in Inhibitory Coupled
    Excitable Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
    11.8 Applications and Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
    11.9 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
    12 Complex and Surprising Dynamics in Gene Regulatory Networks . . . . . . . . . . 147
    12.1 Nonlinear Dynamics in Synthetic Biology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
    12.2 Clustering and Oscillation Death in Genetic Networks . . . . . . . . . . . . . . . . . 148
    12.2.1 The Repressilator with QuorumSensing Coupling . . . . . . . . . . . . . 148
    12.2.2 The Dynamical Regimes for a Minimal System of Repressilators
    Coupled via Phase-Repulsive Quorum Sensing . . . . . . . . . . . . . . . . 150
    12.3 Systems Size Effects in Coupled Genetic Networks . . . . . . . . . . . . . . . . . . . . 152
    12.3.1 Clustering and Enhanced Complexity of the Inhomogeneous
    Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
    12.3.2 Clustering Due to Regular Oscillations in Cell Colonies . . . . . . . . . 154
    12.3.3 Parameter Heterogeneity on the Regular-Attractor Regime . . . . . . 155
    12.3.4 Irregular and Chaotic Self-Oscillations in Colonies of Identical
    Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
    xviii Contents
    12.4 The Constructive Role of Noise in Genetic Networks. . . . . . . . . . . . . . . . . . . 157
    12.4.1 Noise-Induced Oscillations in Circadian Gene Networks . . . . . . . . 157
    12.4.2 Noise-Induced Synchronisation and Rhythms. . . . . . . . . . . . . . . . . . 158
    12.5 Speed Dependent Cellular Decision Making (SdCDM) in Noisy Genetic
    Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
    12.5.1 Speed Dependent Cellular Decision Making in a Small Genetic
    Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
    12.5.2 Speed Dependent Cellular Decision Making in Large Genetic
    Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
    12.6 What is a Genetic Intelligence? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
    12.6.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
    12.6.2 Associative Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
    12.6.3 Classification of Complex Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
    12.6.4 Applications and Implications of Bio-Artificial Intelligence . . . . . . 169
    12.7 Effect of Noise in Intelligent Cellular Decision Making . . . . . . . . . . . . . . . . . 169
    12.7.1 Stochastic Resonance in an Intracellular Associative Genetic
    Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
    12.7.2 Stochastic Resonance in Classifying Genetic Perceptron . . . . . . . . 174
    12.8 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
    13 Modelling Complex Phenomena in Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
    13.1 Cortical Spreading Depression (CSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
    13.1.1 What is CSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
    13.1.2 Models of CSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
    13.1.3 Applications of CSDModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
    13.1.4 Questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
    13.2 Heart Physiome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
    13.2.1 Cardiovascular System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
    13.2.2 Heart Physiome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
    13.2.3 Multi-Level Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
    13.2.4 Questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
    13.3 Modelling of Kidney Autoregulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
    13.3.1 Renal Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
    13.3.2 Experimental Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
    13.3.3 Model of Nephron Autoregulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
    13.3.4 Questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
    13.4 Brain Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
    13.4.1 Mystery of Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
    13.4.2 Brain Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
    13.4.3 Brain Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
    13.4.4 Mammalian Brain as a Network of Networks . . . . . . . . . . . . . . . . . . 215
    13.4.5 Calculation of Integrated Information . . . . . . . . . . . . . . . . . . . . . . . . 223
    13.4.6 Astrocytes and Integrated Information Theory of Consciousness . . 224
    13.4.7 Questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
    Acronyms
    3M The modelling, model, and modeller are introduced in this book of Quantitative Physiology
    AcCoA Acetyl-CoA: It is an intermediary molecule that participates in many biochemical reactions in carbohydrates,
    fatty acids, and amino acids metabolism
    ADP Adenosine diphosphate: It is an important organic compound in metabolism and is essential to the flow of
    energy in living cells
    AI Artificial intelligence: It is sometimes called machine intelligence, in contrast to the human intelligence
    AIDS Acquired immunodeficiency syndrome: It is a transmissible disease caused by the human immunodeficiency
    virus (HIV)
    AP Action potential: An action potential is a rapid rise and subsequent fall in membrane potential of a neuron
    ATP Adenosine triphosphate: The ubiquitous molecule necessary for intracellular energy storage and transfer
    BMI Body mass index: It is a measure of body fat based on height and weight that applies to adult men and women
    BRAIN Brain Research through Advancing Innovative Neurotechnologies: The BRAIN Initiative launched in April
    2013 is focused on revolutionising our understanding of the human brain
    CA Cellular automaton: It is a specifically shaped group of model cells known for evolving through multiple and
    discrete time steps according to a rule set depending on neighbouring cell states
    CICR Calcium-induced calcium release: The autocatalytic release of Ca2+ from the endoplasmic or sarcoplasmic
    reticulum through IP3 receptors or ryanodine receptors. CICR causes the fast release of large amounts of
    Ca2+ from internal stores and is the basis for Ca2+ oscillations and waves in a wide variety of cell types
    CNS Central nervous system: It is the part of the nervous system consisting of the brain and spinal cord
    CR Coherence resonance: It refers to a phenomenon in which addition of certain amount of external noise in
    excitable system makes its oscillatory responses most coherent
    CSD Cortical spreading depression: It is characterised by the propagation of depolarisation waves across the grey
    matter at a velocity of 2–5 mm/min
    CVD Cardiovascular disease: It is a class of diseases that involve the heart or blood vessels
    DFBA Dynamic flux balance analysis: It is the dynamic extension of flux balance analysis (FBA)
    DNA Deoxyribonucleic acid: It is a molecule comprised of two chains that coil around each other to form a double
    helix carrying the genetic information
    DSC Doubly stochastic coherence
    DSE Doubly stochastic effects
    EC coupling Excitation–contraction coupling: It describes a series of events, from the production of an electrical impulse
    (action potential) to the contraction of muscles
    ECF Extracellular fluid: The portion of the body fluid comprises the interstitial fluid and blood plasma
    ECG Electrocardiogram (or EKG): The record is produced by electrocardiography to represent the hearts electrical
    action
    ECS Extracellular space: It is usually taken to be outside the plasma membranes and occupied by fluid
    EEG Electroencephalography: It is an electrophysiological monitoring method to record electrical activity of the
    brain
    ER Endoplasmic reticulum: An internal cellular compartment in non-muscle cells acting as an important Ca2+
    store. The analogous compartment in muscle cells is termed the sarcoplasmic reticulum (SR)
    ETC Electron transport chain
    FA Fatty acid: It is the building block of the fat in our bodies and in the food we eat
    FBA Flux balance analysis: It is a widely used approach for studying biochemical networks
    xix
    xx Acronyms
    FHC Familial hypertrophic cardiomyopathy: It is a heart condition characterised by thickening (hypertrophy) of
    the heart (cardiac) muscle
    FHN FitzHugh–Nagumo model: It is named after Richard FitzHugh and Jin-Ichi Nagumo for describing a
    prototype of an excitable system (e.g., a neuron)
    GFP Green fluorescent protein: A protein, originally derived from a jellyfish, that exhibits bright green fluorescence
    when exposed to blue or ultraviolet light
    GRN Gene regulatory network or genetic regulatory network: It is a collection of regulators that interact with each
    other and with other substances in the cell to govern the gene expression levels of mRNA and proteins
    Glu Glucose: Glucose is a simple sugar with the molecular formula C6H12O6
    Gly Glycogen: It is amultibranched polysaccharide of glucose that serves as a form of energy storage in organisms
    HBP Human Brain Project: It is a European Commission Future and Emerging Technologies Flagship started on
    1 October 2013
    HGP Human Genome Project: It is an international project with the goal of determining the sequence of nucleotide
    base pairs that make up human DNA and of identifying and mapping all genes of the human genome from
    both a physical and a functional standpoint
    HH model The Hodgkin–Huxley model: It is a mathematical model that describes how action potentials in neurons are
    initiated and propagated
    II Integrated information: It is ameasure of the degree to which the components of a system areworking together
    to produce outputs
    IP3 Inositol 1,4,5-trisphosphate: A second messenger responsible for the release of intracellular Ca2+ from
    internal stores, through IP3 receptors
    ICS Intracellular space: It is taken to be inside the cell
    iPS Induced pluripotent stem cells: They are a type of pluripotent stem cell that can be generated directly from
    adult cells
    ISIH Interspike interval histogram
    IUPS The International Union of Physiological Societies
    Lac Lactate (or Lactic acid): It has the molecular formula CH3CH(OH)CO2H
    LC Limit cycle
    MFT Mean field theory: It studies the behaviour of large and complex stochastic models by using a simpler model
    MOMA Minimisation of metabolic adjustment: It is used as an objective function for FBA
    NADH Nicotinamide adenine dinucleotide hydride
    NADPH Nicotinamide adenine dinucleotide phosphate
    NIE Noise-induced excitability
    NIT Noise-induced transition
    NSR National Simulation Resource
    ODE Ordinary differential equation: It is a differential equation containing one or more functions of one
    independent variable and its derivatives
    PC Phosphocreatine: It is a phosphorylated creatine molecule that serves as a rapidly mobilisable reserve of
    high-energy phosphates in skeletal muscle and the brain
    PDE Partial differential equation: It is a differential equation that contains beforehand unknown multivariable
    functions and their partial derivatives
    PDF Probability distribution function
    PE Potential energy
    PNS Peripheral nervous system
    Pyr Pyruvate: It is a key intermediate in several metabolic pathways throughout the cell
    RD Reaction–diffusion: A reaction–diffusion system consists of the diffusion of material and the production of
    that material by reaction
    RFP Red fluorescent protein
    SCN The suprachiasmatic nuclei
    SdCDM Speed dependent cellular decision making
    SERCA Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase: A Ca2+ ATPase pump that transports Ca2+ up its
    concentration gradient from the cytoplasm to the ER/SR
    SGN Synthetic gene network
    Acronyms xxi
    SNR Signal to noise ratio
    SR Sarcoplasmic reticulum:An internal cellular compartment in muscle cells that functions as an important Ca2+
    store. The analogous compartment in non-muscle cells is called the endoplasmic reticulum (ER)
    SR Stochastic resonance: It is a phenomenon where a signal can be boosted by adding white noise to the signal
    TCA cycle Tricarboxylic acid cycle or the Krebs cycle: It is a series of chemical reactions used by all aerobic organisms
    to generate energy through the oxidation of acetyl-CoA into carbon dioxide and chemical energy in the form
    of guanosine triphosphate (GTP)
    TF Transcription factor: It is a protein that binds to specific DNA sequences, thereby controlling the rate of
    transcription of genetic information from DNA to messenger RNA
    TGF Tubuloglomerular feedback
    UCS Ultimate compressive stress
    VGCC Voltage-gated Ca2+ channels: Membrane Ca2+ channels that open in response to depolarisation of the cell
    membrane
    VR Vibrational resonance
    WHO World Health Organization: It is a specialised agency of the United Nations to direct international health

    陈尚宾博士,武汉光电国家研究中心副教授,博士生导师。2001年于湖北师范学院获物理学学士学位,2006年于华中科技大学获生物医学工程博士学位。2006年8月至今在华中科技大学工作;其间2008年2-5月在英国Bradford大学做访问学者,2010-2012在加拿大英属哥伦比亚大学(UBC)做博士后研究两年。其研究工作涉及神经光学成像、神经系统建模、定量生理学,已主持完成国家自然科学基金两项。已在Journal of Neuroscience,Biophysical Journal,Frontiers in Neuroscience等期刊发表第一作者(含通讯)论文十余篇。2007年荣获湖北省自然科学奖一等奖(排名5)。
    合作者Alexey Zaikin教授,是世界顶尖高校伦敦大学学院(UCL)系统医学和应用数学讲席教授,研究兴趣包括系统生物学、理论生物物理学、生物非线性动力学和随机性建模等。Zaikin教授已发表学术论文逾百篇,包含Physical Review Letters多篇,谷歌学术统计h指数29。Zaikin教授自2016年以来短期受聘于华中科技大学工程科学学院,参与《定量生理学》课程教学。

    这是一本整合数学、物理、信息科学等来研究生理学的英文教材,其目的在于倡导以建模、定量化和系统论的方式来更好地理解生理系统。
    这是一本整合数学、物理、信息科学等来研究生理学的英文教材,其目的在于倡导以建模、定量化和系统论的方式来更好地理解生理系统。本书将面向生理学的应用需求(A)、介绍一些基础方法学(B)、提供一些练习案例(C)来构建书本框架。结合生命科学领域迅速发展的各类组学,示范性地建立从基因组到生理组的多层次建模。书本将以系统和模型的新视角来描述和介绍基因表达、骨骼力学、血流动力学、神经活动等生理学主要内容,期望从理论和实践相结合的角度更深入地理解生命系统。
    本书适合作为生物医学工程方向本科生的教材,同时也应适合相关研究者作为一本值得参考的著作。
    本书与斯普林格在全球同步出版,华中科技大学出版社出版的英文版在中国大陆地区发行。

    欧洲科学院院士Jurgen Kurths评价很高。他的评价摘要为:In this textbook, the two very active researchers in Quantitative Physiology,Shangbin Chen and Alexey Zaikin very successfully and originally bring some order in this “zoo of models and their treatment” to become understandable for newcomers in the field.
    This very well written textbook by Shangbin Chen and Alexey Zaikin is a systematic presentation of the strongly evolving field of Quantitative Physiology. It provides the basic principles of this difficult kind of modelling as well as the treatment of the corresponding equations. This book is theoutcome of a joint lecture both gave to students of biomedical engineering at the undergraduate elite School of Engineering Science, Huazhong University of Science and Technology. It is a very useful introduction for starters in the field but it provides also important information and suggestions for researchers in physiology and complex systems science as well as for a broad range of specialists in bioengineering, biology, computer science and others.

    Stephen Hawking says that the next 21st century will be the century of complexity and indeed now Systems Biology or Medicine means dealing with complexity. Both genome and physiome have been emerged in studying complex physiological systems. Computational and mathematical modelling has been regarded as an efficient tool to boost understanding about the living systems in normal or pathophysiological states. This textbook introduces the students and researchers to the modelling and computational study of physiology (i.e. quantitative physiology), which is an increasingly important branch of systems biology. The topics cover basic methodology, case practices and advanced applications. This book aims to build multiscale model for investigating the function in living systems, or, how organisms, organ systems, organs, cells, and biomolecules carry out the chemical or physical functions that exist in a living system. Some of the models related on gene expression, calcium signalling, neural activity, blood dynamics and bone mechanics have been addressed. This book is devoted to set a paradigm for quantitative physiology by integrating biology, mathematics, physics and informatics etc.

    这是一本整合数学、物理、信息科学等来研究生理学的英文教材,其目的在于倡导以建模、定量化和系统论的方式来更好地理解生理系统。本书将面向生理学的应用需求(A)、介绍一些基础方法学(B)、提供一些练习案例(C)来构建书本框架。结合生命科学领域迅速发展的各类组学,示范性地建立从基因组到生理组的多层次建模。书本将以系统和模型的新视角来描述和介绍基因表达、骨骼力学、血流动力学、神经活动等生理学主要内容,期望从理论和实践相结合的角度更深入地理解生命系统。

    本书适合作为生物医学工程方向本科生的教材,同时也应适合相关研究者作为一本值得参考的著作。

    本书与斯普林格在全球同步出版,华中科技大学出版社出版的英文版在中国大陆地区发行。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购