返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版 新型特征抽取算法研究 范自柱著 中国科学技术大学出版社 97
  • 新华书店旗下自营,正版全新
    • 作者: 范自柱著著 | 范自柱著编 | 范自柱著译 | 范自柱著绘
    • 出版社: 中国科学技术大学出版社
    • 出版时间:2014-12-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    美阅书店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 范自柱著著| 范自柱著编| 范自柱著译| 范自柱著绘
    • 出版社:中国科学技术大学出版社
    • 出版时间:2014-12-01
    • 版次:1
    • 印刷时间:2016-12-01
    • 字数:212千字
    • 页数:155
    • 开本:小16开
    • ISBN:9787312040498
    • 版权提供:中国科学技术大学出版社
    • 作者:范自柱著
    • 著:范自柱著
    • 装帧:平装
    • 印次:暂无
    • 定价:32.00
    • ISBN:9787312040498
    • 出版社:中国科学技术大学出版社
    • 开本:小16开
    • 印刷时间:2016-12-01
    • 语种:中文
    • 出版时间:2014-12-01
    • 页数:155
    • 外部编号:8893197
    • 版次:1
    • 成品尺寸:暂无

    前言

    第1章 引论
    1.1 背景
    1.2 研究目的和意义
    1.3 特征抽取方法概述
    1.3.1 线性特征抽取方法
    1.3.2 非线性特征抽取方法
    1.3.3 基于增量学习的特征抽取
    1.3.4 基于表示理论的特征抽取
    1.4 实验常用数据集

    第2章 扩展主成分分析
    2.1 引言
    2.2 PCA简介
    2.3 相似子空间学习框架
    2.3.1 相似子空间框架的基本思想
    2.3.2 相似子空间模型
    2.3.3 基于特征选择的子空间集成
    2.4 实验
    2.4.1 人脸库AR上的实验
    2.4.2 人脸库CMU PIE上的实验
    2.4.3 特征选择
    2.4.4 聚类
    2.4.5 人脸重建
    2.4.6 相似子空间在分类中的作用
    2.5 本章小结

    第3章 基于样本近邻的局部线性鉴别分析框架
    3.1 引言
    3.2 局部鉴别分析框架的基本思想
    3.3 基于向量形式的LDA(VLDA)和基于矩阵形式的LDA(MLDA)
    3.3.1 基于向量形式的LDA(VLDA)
    3.3.2 基于矩阵形式的LDA(MLDA)
    3.4 LLDA框架
    3.4.1 基于向量的LLDA(VLLDA)算法
    3.4.2 基于矩阵的LLDA(MLLDA)算法
    3.4.3 LLDA算法框架
    3.4.4 LLDA框架分析
    3.4.5 近邻个数的选择
    3.4.6 计算复杂度分析
    3.5 实验结果
    3.5.1 在二维模拟数据集上的实验
    3.5.2 在ORL人脸库上的实验
    3.5.3 在Yale人脸库上的实验
    3.5.4 在AR人脸库上的实验
    3.6 本章小结

    第4章 基于局部最小均方误差的分类算法
    4.1 引言
    4.2 最小均方误差算法简介
    4.2.1 MSE的二分类模型
    4.2.2 MSE的多类分类模型
    4.3 LMSE的提出
    4.4 局部最小均方误差模型
    4.4.1 二元分类的LMSE
    4.4.2 多元分类的LMSE
    4.4.3 LMSE算法复杂度及相关讨论
    4.5 实验
    4.5.1 AR数据集上的实验
    4.5.2 在CMU PIE数据集上的实验
    4.5.3 在MNIST数据集上的实验
    4.5.4 在两类数据集上的实验
    4.6 本章小结

    第5章 基于个性化学习的核线性鉴别分析
    5.1 引言
    5.2 一般个性化学习的主要思想
    5.3 个性化KFDA(IKFDA)
    5.3.1 确定学习区域
    5.3.2 使用KFDA的学习模型
    5.3.3 计算复杂性分析
    5.4 实验
    5.4.1 在AR人脸数据集上的实验
    5.4.2 在YaleB人脸数据集上的实验
    5.4.3 在AR+ORL人脸数据集上的实验
    5.4.4 在MNIST数据集上的实验
    5.4.5 学习区域参数尺与分类结果之间的联系
    5.5 本章小结

    第6章 高效KPCA特征抽取方法
    6.1 引言
    6.2 核主成分分析(KPCA)
    6.3 高效的核主成分分析(EKPCA)
    6.3.1 EKPCA的基本思想
    6.3.2 确定基本模式
    6.3.3 复杂度分析
    6.4 实验结果
    6.5 本章小结

    第7章 快速核最小均方误差算法
    7.1 问题的提出
    7.2 KMSE模型
    7.3 快速KMSE(FKMSE)算法
    7.4 实验
    7.4.1 实验1
    7.4.2 实验2
    7.4.3 实验3
    7.5 本章小结

    第8章 核函数参数的自动选择
    8.1 引言
    8.2 基于通用熵的核函数参数选择
    8.2.1 通用熵
    8.2.2 余弦矩阵和核矩阵之间的关系
    8.3 实验
    8.3.1 高斯核函数参数选择
    8.3.2 多项式核函数参数选择
    8.4 本章小结

    第9章 基于样本表示的特征抽取
    9.1 基于L2范数的表示方法
    9.1.1 协同表示分类(CRC)方法
    9.1.2 线性回归分类(LRC)方法
    9.1.3 两阶段测试样本的稀疏表示(TPTSR)方法
    9.2 基于L1范数的表示方法
    9.3 基于L0范数的表示方法
    9.3.1 引言
    9.3.2 GASRC
    9.3.3 实验
    9.4 本章小结

    参考文献

    范自柱,男,1975年08月生,副教授,博士。1992年原安徽无为师范学校毕业,2003年合肥工业大学计算机软件与理论专业硕士研究生毕业,2014年1月哈尔滨工业大学计算机应用技术专业博士研究生毕业。 现主持国家自然基金2项(一项面上项目和一项地区项目)和江西省教育厅科研基金1项。已经主持完成江西省自然科学基金1项、江西省教育厅科研基金2项和华东交通大学校立基金2项。以排名第二身份完成国家自然科学基金1项和江西省教育厅科研基金1项。获得多项省市级科研奖励。担任多个靠前学术期刊如IEEE Transaction on neural network and learning systems, Neurocomputing和Neural Computing & Applications 等期刊审稿人以及多个靠前会议论文审阅人。

     《新型特征抽取算法研究》的主要内容是特征抽取方法在人脸识别和其他分类任务中的应用。首先介绍了改进的特征抽取方法以提高经典特征抽取方法的分类精度。接着介绍了几种特征抽取方法,它们的目的是提高特征抽取算法的计算效率。最后从一个新颖的角度去描述特征抽取方法,即从样本表示的角度来阐述特征抽取,这源自目前备受关注的压缩感知理论。
      《新型特征抽取算法研究》既可作为自动化、计算机、电子工程和信息管理等专业本科生、研究生和研究人员的科研用书,又可作为从事模式识别、机器学习、计算机视觉和图像处理等工作的开管人员的参考资料。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购