返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版 解析深度学习:语音识别实践 俞栋,邓力著 电子工业出版社 9
  • 新华书店旗下自营,正版全新
    • 作者: 俞栋,邓力著著 | 俞栋,邓力著编 | 俞栋,邓力著译 | 俞栋,邓力著绘
    • 出版社: 电子工业出版社
    • 出版时间:2016-07-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    美阅书店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 俞栋,邓力著著| 俞栋,邓力著编| 俞栋,邓力著译| 俞栋,邓力著绘
    • 出版社:电子工业出版社
    • 出版时间:2016-07-01
    • 版次:1
    • 印次:11
    • 印刷时间:2020-10-01
    • 字数:378000
    • 页数:290
    • 开本:16开
    • ISBN:9787121287961
    • 版权提供:电子工业出版社
    • 作者:俞栋,邓力著
    • 著:俞栋,邓力著
    • 装帧:平装
    • 印次:11
    • 定价:109.00
    • ISBN:9787121287961
    • 出版社:电子工业出版社
    • 开本:16开
    • 印刷时间:2020-10-01
    • 语种:中文
    • 出版时间:2016-07-01
    • 页数:290
    • 外部编号:10667280
    • 版次:1
    • 成品尺寸:暂无

    译者序

    前言
    术语缩写
    符号
    1 简介
    1.1 自动语音识别:更好的沟通之桥
    1.1.1 人类之间的交流
    1.1.2 人机交流
    1.2 语音识别系统的基本结构
    1.3 全书结构
    1.3.1 第一部分:传统声学模型
    1.3.2 第二部分:深度神经网络
    1.3.3 第三部分:语音识别中的DNN-HMM混合系统
    1.3.4 第四部分:深度神经网络中的表征学习
    1.3.5 第五部分:高级的深度模型
    第一部分 传统声学模型
    2 混合高斯模型
    2.1 随机变量
    2.2 高斯分布和混合高斯随机变量
    2.3 参数估计
    2.4 采用混合高斯分布对语音特征建模
    3 隐马尔可夫模型及其变体
    3.1 介绍
    3.2 马尔可夫链
    3.3 序列与模型
    3.3.1 隐马尔可夫模型的性质
    3.3.2 隐马尔可夫模型的仿真
    3.3.3 隐马尔可夫模型似然度的计算
    3.3.4 计算似然度的高效算法
    3.3.5 前向与后向递归式的证明
    3.4 期望最大化算法及其在学习HMM参数中的应用
    3.4.1 期望最大化算法介绍
    3.4.2 使用EM算法来学习HMM参数——Baum-Welch算法
    3.5 用于解码HMM状态序列的维特比算法
    3.5.1 动态规划和维特比算法
    3.5.2 用于解码HMM状态的动态规划算法
    3.6 隐马尔可夫模型和生成语音识别模型的变体
    3.6.1 用于语音识别的GMM-HMM模型
    3.6.2 基于轨迹和隐藏动态模型的语音建模和识别
    3.6.3 使用生成模型HMM及其变体解决语音识别问题
    第二部分 深度神经网络
    4 深度神经网络
    5 高级模型初始化技术
    第三部分 语音识别中的深度神经网络-隐马尔可夫混合模型
    6 深度神经网络-隐马尔可夫模型混合系统
    7 训练和解码的加速
    8 深度神经网络序列鉴别性训练
    第四部分 深度神经网络中的特征表示学习
    9 深度神经网络中的特征表示学习
    10 深度神经网络和混合高斯模型的融合
    11 深度神经网络的自适应技术
    第五部分 先进的深度学习模型
    12 深度神经网络中的表征共享和迁移
    13 循环神经网络及相关模型
    14 计算型网络
    15 总结及未来研究方向
    参考文献

    俞栋,1998年加入微软公司,现任微软研究院首席研究员、浙江大学兼职教授和中科大客座教授。他是语音识别和深度学习方向的资深专家,出版了两本专著,发表了150多篇论文,是近60项的发明人及有广泛影响力的深度学习开源软件CNTK的发起人和主要作者之一。他在基于深度学习的语音识别技术上的工作带来了语音识别研究方向的转变,极大地推动了语音识别领域的发展,并获得2013年IEEE信号处理协会很好论文奖。俞栋博士现担任IEEE语音语言处理专业委员会委员,曾担任IEEE/ACM音频、语音及语言处理汇刊、IEEE信号处理杂志等期刊的编委。

    本书是首部介绍语音识别中深度学习技术细节的专著。全书首先概要介绍了传统语音识别理论和经典的深度神经网络核心算法。接着全面而深入地介绍了深度学习在语音识别中的应用,包括“深度神经网络-隐马尔可夫混合模型”的训练和优化,特征表示学习、模型融合、自适应,以及以循环神经网络为代表的若干先进深度学习技术。
    本书适合有一定机器学习或语音识别基础的学生、研究者或从业者阅读,所有的算法及技术细节都提供了详尽的参考文献,给出了深度学习在语音识别中应用的全景。

    "AlphaGo与李世石的围棋大战激发了人们对人工智能是非的诸多争论。人工智能背后的工作原理深度学习跳入大众的视野。AlphaGo的大获全胜一定程度展示了深度学习在应用领域的成功,而语音识别正是深度学习取得显著成功的应用领域之一。
    本书是抢先发售以深度学习为主线介绍语音识别应用的书籍,对读者了解语音识别技术及其发展历程有重要的参考价值。
    本书作者俞栋、邓力均是该领域的有名专家,他们是深度学习在应用领域取得突破性进展的推动者与实践者,他们在书中分享的研究成果一定程度上代表了本领域近期新的研究进展;译者俞凯、钱彦旻也是本领域的资深专家,并有众多实践成果。对于从事此领域研究的读者来说,本书无疑有重要的参考价值。"

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购