返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版 煤体瓦斯热力学 冯增朝,周动,赵东著 科学出版社 97870306
  • 新华书店旗下自营,正版全新
    • 作者: 冯增朝,周动,赵东著著 | 冯增朝,周动,赵东著编 | 冯增朝,周动,赵东著译 | 冯增朝,周动,赵东著绘
    • 出版社: 科学出版社
    • 出版时间:2021-10
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    美阅书店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 冯增朝,周动,赵东著著| 冯增朝,周动,赵东著编| 冯增朝,周动,赵东著译| 冯增朝,周动,赵东著绘
    • 出版社:科学出版社
    • 出版时间:2021-10
    • 版次:1
    • 印次:1
    • 字数:300.0
    • 页数:237
    • 开本:16开
    • ISBN:9787030636317
    • 版权提供:科学出版社
    • 作者:冯增朝,周动,赵东著
    • 著:冯增朝,周动,赵东著
    • 装帧:平装
    • 印次:1
    • 定价:118.00
    • ISBN:9787030636317
    • 出版社:科学出版社
    • 开本:16开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2021-10
    • 页数:237
    • 外部编号:11317324
    • 版次:1
    • 成品尺寸:暂无

    目录前言第一章 煤体瓦斯热力学引论 11.1 煤体瓦斯热力学的基本概念 11.2 煤体瓦斯热力学研究构架 2参考文献 5上篇 煤体与甲烷的热物理作用第二章 甲烷分子间的相互作用及凝聚现象 92.1 分子间的相互作用 92.1.1 甲烷的分子结构特征 92.1.2 分子间作用力 92.1.3 几种常用的势能模型 112.1.4 系综理论 162.2 气-液凝聚现象 192.2.1 范德瓦耳斯方程对理想气体方程的修正 202.2.2 范德瓦耳斯方程的统计力学解释 222.2.3 其他状态方程 262.2.4 等温线 262.2.5 临界现象 292.3 凝聚热理论计算 312.3.1 克劳修斯-克拉珀龙方程 312.3.2 范德瓦耳斯方程常数得到的凝聚热 32参考文献 33第三章 煤与甲烷的吸附现象及吸附热 363.1 煤体的基本特性 363.1.1 煤的分子结构特征 363.1.2 煤体的孔隙与裂隙结构特征 373.1.3 煤体表面特征 443.2 固-气吸附现象 463.2.1 朗缪尔方程——单分子层吸附 473.2.2 BET方程—多分子层吸附 563.2.3 吸附等温线 583.2.4 固-气吸附的影响因素 623.3 吸附热理论 633.3.1 等量吸附热 643.3.2 吸附势理论 653.3.3 两能态简化模型 673.3.4 朗缪尔单分子层统计力学模型 703.3.5 模型之间的联系和区别 733.3.6 化学势对吸附热的影响 76参考文献 77第四章 煤的非均匀势阱吸附甲烷规律 794.1 煤的非均匀势阱吸附甲烷理论模型 794.2 煤的非均匀势阱吸附甲烷特征实验研究 814.2.1 非均匀势阱煤体吸附甲烷规律 824.2.2 温度与吸附压力对煤与甲烷吸附热的影响 834.3 基于吸附动力学的煤非均匀势阱吸附甲烷特征数值模拟 864.3.1 煤与甲烷模型建立与吸附过程数值模拟 864.3.2 非均匀势阱的等温吸附特征 884.3.3 非均匀势阱的等压吸附特征 904.3.4 覆盖率对压力与温度的敏感性 924.3.5 煤与甲烷非均匀势阱等温吸附方程 934.4 非均匀势阱煤体的甲烷吸附量计算方法 954.4.1 非均匀势阱煤体的等温甲烷吸附过程中朗缪尔参数a与b的变化规律 954.4.2 朗缪尔方法与非均匀势阱煤体的甲烷吸附量计算精度 984.5 甲烷分子在孔喉空间的通过性 1024.5.1 甲烷在孔喉空间的势能 1034.5.2 含微孔孔喉的阻塞孔特性 1074.5.3 甲烷分子在微孔孔喉通过性的影响因素 1084.6 微孔孔喉对甲烷吸附/解吸动力学特性的影响 1104.6.1 含孔喉结构微孔解吸甲烷的数值模型 1104.6.2 微孔孔喉对甲烷解吸动力学特性的影响 1114.6.3 微孔孔喉对甲烷解吸滞后特征的影响 114参考文献 115第五章 煤体细观结构吸附甲烷特征 1175.1 煤体细观结构的观测研究 1175.1.1 材料的细观结构及其研究方法 1175.1.2 煤样制备与SEM-EDS测试 1195.1.3 煤样CT与表面层提取方法 1205.2 煤岩细观结构特征与分类 1225.2.1 煤岩SEM-EDS特征及其分类 1225.2.2 基于EDS面扫描的煤细观结构定量化描述 1265.2.3 基于CT扫描煤岩密度分布特征 1325.3 煤体细观结构吸附/解吸甲烷温度变化规律 1325.3.1 煤吸附/解吸甲烷红外热成像实验研究 1325.3.2 煤吸附/解吸甲烷温度变化的非均匀特征 1345.3.3 煤不同细观结构温度变化特征 1385.4 甲烷在煤体细观结构的分布与演化 1425.4.1 煤中不同细观结构的非均匀势阱分布特征 1425.4.2 煤中甲烷分布特征随吸附压力变化规律 1445.4.3 煤中甲烷富集区域分布的分形特征 147参考文献 150下篇 热与水作用下煤体中甲烷运移第六章 高温条件下煤吸附/解吸甲烷特性实验 1536.1 高温吸附/解吸的实验 1536.1.1 高温吸附实验装置 1536.1.2 试样的选取和加工 1556.1.3 高温吸附/解吸实验 1556.2 煤体高温吸附/解吸甲烷的特征 1576.2.1 定压、定容解吸特性分析 1576.2.2 温度、压力共同作用的煤体解吸甲烷机制 1626.2.3 定容、定压吸附特性分析 1646.2.4 等温吸附特性分析 1666.3 结合吸附理论对结果的综合分析讨论 1686.3.1 吸附模型的确定 1686.3.2 吸附参数a、b的分析和讨论 1696.3.3 温度单一因素对吸附参数a、b的影响 170参考文献 170第七章 水作用下高温煤体解吸甲烷的特性 1727.1 水作用下高温吸附/解吸实验 1727.1.1 含水煤高温吸附实验装置 1727.1.2 含水煤高温吸附实验介绍 1757.2 水作用下高温解吸实验结果 1757.2.1 实验数据和参数的定义 1757.2.2 瓦斯解吸率随温度的变化规律 1767.2.3 试样累计解吸率随温度的变化 1797.3 水作用下甲烷高温解吸特性 1797.3.1 温度对煤体解吸性的影响及规律 1797.3.2 多种煤层气开采方案的效率对比 1817.4 含水煤体定容吸附实验 1827.4.1 实验样品、装置及实验过程 1827.4.2 吸附速率和吸附能力分析 1837.4.3 预先水作用的煤体吸附性讨论 1877.4.4 煤体预先含水吸附的微观机制研究 188参考文献 190第八章 煤层气气液两相流动界面模型及渗流 1918.1 气液两相流动界面理论 1918.2 气液两相流动界面模型 1948.2.1 不计压缩性两相驱替界面模型 1948.2.2 压缩性两相驱替界面模型 1968.2.3 拟压力函数方程驱替界面模型 2008.3 气液两相流动界面模型验证 2038.3.1 非稳态气水两相流实验 2038.3.2 不计压缩性两相驱替界面模型数值模拟 2078.3.3 压缩性两相驱替界面模型数值模拟 2118.3.4 拟压力函数方程驱替界面模型数值模拟 215参考文献 220第九章 温度应力作用下煤体气液两相流动 2219.1 温度控制下气液两相流实验 2219.1.1 气液两相流实验设备及试件 2219.1.2 气液两相流实验方案与步骤 2229.2 温度对气液两相渗流过程的影响 2239.2.1 温度对产液阶段的影响 2239.2.2 温度对气液两相渗流各阶段的影响 2249.3 温度作用下气液两相流体渗流规律 2289.3.1 温度对单相流体渗流影响 2289.3.2 温度对气液两相相对渗透率的影响 2329.4 温度及应力作用下气液两相流变化规律 2349.5 气液两相产出过程温度敏感性分析 235参考文献 237CONTENTSPrefaceChapter 1 Introduction 11.1 The Concept of Thermodynamics of Gas in Coal 11.2 The Research Content and Method of Thermodynamics of Gas in Coal 2Reference 5Section Ⅰ:Thermophysical Interaction between Coal and MethaneChapter 2 Interactions and Condensation in Methane Molecules 92.1 Intermolecular Interaction 92.1.1 The Molecular Structure of Methane 92.1.2 Intermolecular Force 92.1.3 Several Commonly Used Potential Energy Models 112.1.4 The Theory of Statistical Ensemble 162.2 The Phenomenon of Gas-Liquid Condensation 192.2.1 The Modification of van der Waals Equation to the Ideal Gas Equation 202.2.2 Explain with the Statistical Mechanics of van der Waals Equation 222.2.3 The Others State Equations 262.2.4 Isotherm 262.2.5 Critical Phenomenon 292.3 The Theoretical Calculation of Condensation Heat 312.3.1 The Equation of Benoit Pierre Emile Clapeyron 312.3.2 Condensation Heat form van der Waals Equation 32Reference 33Chapter 3 The Adsorptions Phenomenon and Heat in Coal and Methane 363.1 The Characteristics of Coal 363.1.1 Molecular Structure of Coal 363.1.2 Structural Characteristics of Coal Pores and Fractures 373.1.3 The Surfaces Features of Coal 443.2 The Phenomenon of Adsorption in Solid-Gas 463.2.1 Langmuir Equation-Monolayer Adsorption 473.2.2 BET Equation-Multilayer Adsorption 563.2.3 The Isotherm of Adsorption 583.2.4 Factors of Affecting Adsorption in Solid-Gas 623.3 The Theory of Adsorption Heat 633.3.1 Heat of Equal Adsorption 643.3.2 The Theory of Adsorption Potential 653.3.3 The Simplified Model of Two-Energy State 673.3.4 Langmuir Statistical Model of Single Molecular Layer 703.3.5 Connections and Differences between Models 733.3.6 Effect of Chemical Potential on Adsorption Heat 76Reference 77Chapter 4 Adsorption of Methane on Coal Non-Uniform Potential Wells 794.1 Theoretical Model of Methane Adsorption by Heterogeneous Potential Well in Coal 794.2 Experimental Study on Characteristics of Methane Adsorption by Non-Uniform Potential Wells in Coal 814.2.1 Regularity of Methane Adsorption by Non-Uniform Potential Well in Coal 824.2.2 Effect of Temperature and Adsorption Pressure on Adsorption Heat of Coal and Methane 834.3 Numerical Simulation of Methane Adsorption Characteristics of Coal Non-Uniform Potential Wells Based on Adsorption Kinetics 864.3.1 Modeling of Coal and Methane and Numerical Simulation of Adsorption Process 864.3.2 Isothermal Adsorption Characteristics of Non-Uniform Potential Wells 884.3.3 Isobaric Adsorption Characteristics of Non-Uniform Potential Wells 904.3.4 The Sensitivity of Coverage to Pressure and Temperature 924.3.5 Isothermal Adsorption Equation of Coal and Methane Non-Uniform Potential Well 944.4 Calculation Method of Methane Adsorption in Non-Uniform Potential Well Coal 954.4.1 Variations of Langmuir Parameters a and b During Isothermal Methane Adsorption in Heterogeneous Potential Well Coals 954.4.2 Langmuir Method and Calculation Accuracy of Methane Adsorption Amount in Coal Body with Non-Uniform Potential Well 984.5 Passability of Methane Molecules in Pore Throat Space 1024.5.1 Potential Energy of Methane in Pore Throat Space 1034.5.2 Characteristics of Blocked Pores with Microporous Larynx 1074.5.3 Factors Affecting the Permeability of Methane Molecules in Microporous Pore Throat 1084.6 Effect of Microporous Pore Throat on Kinetic Characteristics of Methane Adsorption and Desorption 1104.6.1 Numerical Model of Micropore Desorption of Pore Throat Structure 1104.6.2 Effect of Microporous Pore Throat on Kinetic Characteristics of Methane Desorption 1114.6.3 Influence of Microporous Pore Throat on Hysteresis Characteristics of Methane Desorption 114Reference 115Chapter 5 Characteristics of Adsorption of Methane on the Meso-Structure of Coal 1175.1 Observation and Research on the Meso-Structure of Coal 1175.1.1 Microstructure of Materials and Their Research Methods 1175.1.2 The Preparation of Coal Sample and SEM-EDS Test 1195.1.3 Methods of CT Scanning and Surface Layer Extraction of Coal Samples 1205.2 Meso-Structural Characteristics and Classification of Coal 1225.2.1 Characteristics and Classification of SEM-EDS of Coal 1225.2.2 Quantitative Description of Coal Mesostructure Based on EDS Surface Scanning 1265.2.3 Density Distribution Characteristics of Coal Based on CT Scanning 1325.3 Temperature Variation of Mesostructure Adsorption / Desorption of Coal 1325.3.1 Infrared Thermal Imaging Test of Coal Adsorption / Desorption of Methane 1325.3.2 Non-Uniform Characteristics of Temperature Change of Coal Adsorption / Desorption Methane 1345.3.3 Temperature Characteristics of Different Meso-Structures of Coal 1385.4 Distribution and Evolution of Mesostructure of Methane in Coal 1425.4.1 Distribution Characteristics of Non-Uniform Potential Wells with Different Mesostructures in Coal 1425.4.2 The Distribution of Methane in Coal Varies with the Pressure of Adsorption 1445.4.3 Fractal Characteristics of the Regional Distribution of Methane Enrichment in Coal 147Reference 150SectionⅡ:Methane Transport in Coal under Heat and WaterChapter 6 Test of Methane Adsorption-Desorption Characteristics of Coal with High Temperature 1536.1 Test of High Temperature Adsorption / Desorption 1536.1.1 The Device of High-Temperature Adsorption 1536.1.2 Selection and Processing of Samples 1556.1.3 Test of High Temperature Adsorption / Desorption 1556.2 Characteristics of Methane Adsorption / Desorption at High Temperature of Coal 1576.2.1 Analysis of Constant Pressure and Constant Volume Desorption Characteristics 1576.2.2 Mechanism of Methane Desorption from Coal under Temperature and Pressure 1626.2.3 Analysis of Constant Volume and Constant Pressure Adsorption Characteristics 1646.2.4 Analysis of Isothermal Adsorption Characteristics 1666.3 Comprehensive Analysis and Discussion of the Results in Combination with Adsorption Theory 1686.3.1 Determination of Adsorption Model 1686.3.2 Analysis and Discussion of Adsorption Parameters a, b 1696.3.3 The Influence of Temperature Single Factor on Adsorption Parameters a, b 170Reference 170Chapter 7 Test of Coal Adsorption-Desorption Methane Characteristics with Water and Temperature 1727.1 Test of Water Injection (Water-Containing) High Temperature Adsorption 1727.1.1 The Device of High-Temperature (Water-Containing) and High- Pressure Adsorption Experimental 1727.1.2 Explanation of Conditions for Adsorption Test 1757.2 Results of High Temperature Desorption Experiments under the Action of Water 1757.2.1 Definition of Experimental Data and Parameters 1757.2.2 Law of Gas Desorption Rate with Temperature 1767.2.3 The Change of the Cumulative Desorption Rate of the Sample with Temperature 1797.3 Desorption Characteristics of Methane under the Action of Water in High Temperature 1797.3.1 The Influence of Temperature on the Desorption Property of Coal and Its Regularity 1797.3.2 Efficiency Comparison of Various Coalbed Methane Exploitation Schemes 1817.4 Constant Volume Adsorption Experiment of Water-Containing Coal 1827.4.1 Description of Experimental Samples, Devices and Processes 1827.4.2 Analysis of Adsorption Rate and Capacity 1837.4.3 Discussion on the

    本书共10章,系统论述与介绍煤体瓦斯热力学的理论模型,试验研究方法,现象、规律等方方面面。本书第1章介绍了煤体瓦斯热力学的基本概念、构架、研究思想等核心内容。上篇包括第2-5章,详细论述了煤吸附瓦斯的热力学理论,包括甲烷吸附与凝聚的基本理论,煤的非均匀势阱吸附甲烷特征、以及煤与甲烷吸附热的实验观测,阐释了煤与甲烷吸附作用的原理及热效应;上篇包括第6-10章,详细论述了热作用的煤体瓦斯运移;包括温度对干燥煤体、含水煤体甲烷吸附解吸特征、温度作用下甲烷在煤体孔吼结构的通过性,以及,温度应力作用下煤体气液两相流动特性等内容。书中囊括了作者及学术团队十余年来的重要研究成果,也涵盖了国内外相关研究的进展。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购