由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
正版 数据挖掘 蒋盛益 电子工业出版社 9787121450778 书籍
¥ ×1
目 录 上篇 理论篇 第1章 绪论 2 1.1 数据挖掘技术使用背景 4 1.2 数据挖掘任务及过程 5 1.2.1 数据挖掘定义 5 1.2.2 数据挖掘任务 5 1.2.3 数据挖掘过程 7 1.2.4 数据挖掘对象 8 1.2.5 数据挖掘工具及其选择 13 1.3 数据挖掘应用 13 1.3.1 数据挖掘在计算机领域中的应用 14 1.3.2 数据挖掘在商业领域中的应用 15 1.3.3 数据挖掘在其他领域中的应用 16 1.3.4 数据挖掘技术的前景 17 1.4 数据挖掘与隐私保护 18 本章小结 20 习题1 20 第2章 数据处理基础 23 2.1 数据 24 2.1.1 数据及数据类型 24 2.1.2 数据集的类型 25 2.2 数据探索 27 2.2.1 描述性统计分析 27 2.2.2 数据可视化 30 2.2.3 辛普森悖论 34 2.3 数据预处理 37 2.3.1 数据清理 38 2.3.2 数据集成 41 2.3.3 特征变换 41 2.3.4 数据归约 48 2.4 相似性度量 55 2.4.1 属性之间的相似性度量 56 2.4.2 对象之间的相似性度量 57 本章小结 60 习题2 61 第3章 分类和回归 65 3.1 分类概述 66 3.2 决策树分类方法 67 3.2.1 决策树的基本概念 67 3.2.2 构建决策树的要素 68 3.2.3 Hunt算法 73 3.2.4 C4.5算法 74 3.2.5 CART算法 79 3.2.6 决策树算法的特点 90 3.3 贝叶斯分类方法 90 3.3.1 贝叶斯定理 91 3.3.2 朴素贝叶斯分类算法 92 3.3.3 贝叶斯信念网络 96 3.4 k-最近邻分类方法 97 3.4.1 k-最近邻分类的基本问题 98 3.4.2 k-最近邻分类算法描述 98 3.4.3 k-最近邻分类算法的优缺点 100 3.5 神经网络分类方法 100 3.5.1 人工神经网络的基本概念 100 3.5.2 典型神经网络模型介绍 102 3.5.3 神经网络的特点 103 3.5.4 深度网络和深度学习算法 104 3.6 支持向量机 105 3.7 集成分类方法 107 3.8 分类问题拓展 113 3.8.1 不平衡分类问题 113 3.8.2 半监督学习 115 3.8.3 单类分类 115 3.8.4 多标签分类 115 3.8.5 层次分类 115 3.9 分类模型的评价 116 3.9.1 分类模型性能评价指标 116 3.9.2 分类模型的过度拟合 117 3.9.3 评估分类模型性能的方法 117 3.10 综合案例:信用风险分析 118 3.11 回归分析 121 3.11.1 多元线性回归模型 122 3.11.2 非线性回归 125 3.11.3 逻辑回归 127 本章小结 131 习题3 131 第4章 聚类分析 137 4.1 聚类分析概述 138 4.2 k-means算法及其改进 141 4.2.1 基本k-means算法 141 4.2.2 k-means聚类算法的拓展 145 4.3 层次聚类算法 150 4.3.1 二分k-means算法 151 4.3.2 BIRCH算法 152 4.3.3 CURE算法 154 4.3.4 ROCK算法 155 4.4 基于密度的聚类算法 157 4.5 基于图的聚类算法 160 4.5.1 Chameleon聚类算法 160 4.5.2 基于SNN的聚类算法 165 4.6 一趟聚类算法 167 4.6.1 阈值选择 167 4.6.2 算法应用 171 4.7 基于模型的聚类算法 172 4.7.1 期望优选化方法 172 4.7.2 概念聚类 172 4.7.3 SOM方法 174 4.8 聚类算法评价 176 4.9 综合案例:航空公司客户价值分析 178 本章小结 184 习题4 184 第5章 关联分析 187 5.1 关联分析概述 188 5.2 关联规则分析基础 188 5.2.1 基本概念 188 5.2.2 基础分析方法 190 5.3 Apriori算法 192 5.3.1 Apriori性质 192 5.3.2 产生频繁项集 193 5.3.3 频繁项集构造示例 194 5.3.4 产生关联规则 195 5.3.5 规则的评估标准 198 5.3.6 Apriori算法评价 201 5.4 FP-Growth算法 201 5.4.1 FP-tree表示法 201 5.4.2 构建FP-tree 202 5.4.3 发现频繁项集 204 5.5 关联规则扩展 205 5.5.1 关联规则分类 205 5.5.2 多层次关联规则 206 5.5.3 多维度关联规则 207 5.5.4 定量关联规则 208 5.5.5 基于约束的关联规则 208 5.5.6 序列模式挖掘 208 5.6 综合案例:移动业务关联分析 209 5.6.1 数据准备 209 5.6.2 数据预处理 209 5.6.3 关联规则挖掘过程 211 5.6.4 规则的优化 214 5.6.5 模型的应用 215 本章小结 216 习题5 216 第6章 离群点挖掘 220 6.1 离群点挖掘概述 221 6.2 基于统计的方法 222 6.3 基于距离的方法 224 6.4 基于相对密度的方法 226 6.5 基于聚类的方法 231 6.5.1 基于对象的离群因子方法 231 6.5.2 基于簇的离群因子方法 234 6.5.3 基于聚类的动态数据离群点检测方法 236 6.6 离群点挖掘方法的评估 237 6.7 综合案例 237 6.7.1 离群点检测在癌症诊断中的应用 237 6.7.2 离群点检测在网络入侵检测中的应用 239 本章小结 242 习题6 242 下篇 实践篇 第7章 文本挖掘 246 7.1 文本挖掘概述 247 7.1.1 分词 247 7.1.2 文本表示与词权重计算 250 7.1.3 文本特征选择 252 7.1.4 文本分类 253 7.1.5 文本聚类 256 7.1.6 文档自动摘要 258 7.1.7 文本情感分析 262 7.1.8 用户画像 265 7.2 案例分析 269 7.2.1 虚假新闻检测案例 269 7.2.2 社交平台情感分类 277 本章小结 283 第8章 数据挖掘的金融应用 285 8.1 数据挖掘在金融领域中的应用概述 287 8.1.1 金融科技 287 8.1.2 金融领域中的数据挖掘应用 289 8.2 银行潜在贷款客户挖掘 295 8.2.1 业务理解 295 8.2.2 数据理解与数据准备 296 8.2.3 模型构建与评估 299 8.3 贷款违约 301 本章小结 305 附录A 数据挖掘常用资源列表 307 参考文献 308
本书内容分为数据挖掘理论和数据挖掘实践两部分。数据挖掘理论部分主要包括数据挖掘的基本概念、数据预处理、聚类分析、分类与回归、关联规则挖掘及离群点检测。数据挖掘实践部分讨论数据挖掘在文本挖掘和金融领域中的应用,通过虚假新闻检测和社交平台情绪分析等案例,展示数据挖掘在文本挖掘方面的应用;通过潜在贷款客户挖掘、贷款违约等案例展示数据挖掘在金融领域的应用。 本书可作为高等学校计算机、数据科学与大数据、电子商务、信息科学等相关专业的教材或参考书,也可供从事数据挖掘研究的科研、技术人员参考。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格