返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版 有限温度玻色凝聚气体
  • 新华书店旗下自营,正版全新
    • 作者: (加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著著 | (加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著编 | (加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著译 | (加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著绘
    • 出版社: 北京大学出版社
    • 出版时间:2013-04-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    美阅书店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: (加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著著| (加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著编| (加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著译| (加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著绘
    • 出版社:北京大学出版社
    • 出版时间:2013-04-01
    • 版次:影印版
    • 印次:1
    • 印刷时间:2014-08-01
    • 字数:572000
    • 页数:462
    • 开本:大32开
    • ISBN:9787301245514
    • 版权提供:北京大学出版社
    • 作者:(加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著
    • 著:(加)格里芬(A. Griffin),(日)二里彻郎(T. Nikuni),(加)扎伦巴(E. Zaremba)著
    • 装帧:平装
    • 印次:1
    • 定价:81.00
    • ISBN:9787301245514
    • 出版社:北京大学出版社
    • 开本:大32开
    • 印刷时间:2014-08-01
    • 语种:英语
    • 出版时间:2013-04-01
    • 页数:462
    • 外部编号:8321616
    • 版次:影印版
    • 成品尺寸:暂无

    Preface page ix
    1 Overview and introduction 1
    1.1 Historical overview of Bose superfluids 9
    1.2 Summary of chapters 12
    2 Condensate dynamics at T = 0 19
    2.1 Gross-Pitaevskii (GP) equation 20
    2.2 Bogoliubov equations for condensate fluctuations 28
    3 Coupled equations for the condensate
    and thermal cloud 32
    3.1 Generalized GP equation for the condensate 33
    3.2 Boltzmann equation for the noncondensate atoms 39
    3.3 Solutions in thermal equilibrium 43
    3.4 Region of validity of the ZNG equations 46
    4 Greens functions and self-energy approximations 54
    4.1 Overview of Greens function approach 54
    4.2 Nonequilibrium Greens functions in normal systems 58
    4.3 Greens functions in a Bose-condensed gas 68
    4.4 Classification of self-energy approximations 74
    4.5 Dielectric formalism 79
    5 The Beliaev and the time-dependent HFB
    approximations 81
    5.1 Hartree-Fock-Bogoliubov self-energies 82
    5.2 Beliaev self-energy approximation 87
    5.3 Beliaev as time-dependent HFB 92
    5.4 Density response in the Beliaev-Popov approximation 98
    6 Kadanoff-Baym derivation of the ZNG equations 107
    6.1 Kadanoff-Baym formalism for Bose superfluids 108
    6.2 Hartree-Fock-Bogoliubov equations 111
    6.3 Derivation of a kinetic equation with collisions 115
    6.4 Collision integrals in the Hartree-Fock approximation 119
    6.5 Generalized GP equation 122
    6.6 Linearized collision integrals in collisionless theories 124
    7 Kinetic equation for Bogoliubov thermal
    excitations 129
    7.1 Generalized kinetic equation 130
    7.2 Kinetic equation in the Bogoliubov-Popov approximation 135
    7.3 Comments on improved theory 143
    8 Static thermal cloud approximation 146
    8.1 Condensate collective modes at finite temperatures 147
    8.2 Phenomenological GP equations with dissipation 157
    8.3 Relation to Pitaevskiis theory of superfluid relaxation 160
    9 Vortices and vortex lattices at finite temperatures 164
    9.1 Rotating frames of reference: classical treatment 165
    9.2 Rotating frames of reference: quantum treatment 170
    9.3 Transformation of the kinetic equation 174
    9.4 Zaremba-Nikuni-Griffin equations in a rotating frame 176
    9.5 Stationary states 179
    9.6 Stationary vortex states at zero temperature 181
    9.7 Equilibrium vortex state at finite temperatures 184
    9.8 Nonequilibrium vortex states 187
    10 Dynamics at finite temperatures using the
    moment method 198
    10.1 Bose gas above TBEC 199
    10.2 Scissors oscillations in a two-component superfluid 204
    10.3 The moment of inertia and superfluid response 220
    11 Numerical simulation of the ZNG equations 227
    11.1 The generalized Gross-Pitaevskii equation 228
    11.2 Collisionless particle evolution 231
    11.3 Collisions 237
    11.4 Self-consistent equilibrium properties 248
    11.5 Equilibrium collision rates 252
    12 Simulation of collective modes at finite temperature 256
    12.1 Equilibration 257
    12.2 Dipole oscillations 260
    12.3 Radial breathing mode 263
    12.4 Scissors mode oscillations 270
    12.5 Quadrupole collective modes 279
    12.6 Transverse breathing mode 286
    13 Landau damping in trapped Bose-condensed gases 292
    13.1 Landau damping in a uniform Bose gas 293
    13.2 Landau damping in a trapped Bose gas 298
    13.3 Numerical results for Landau damping 303
    14 Landaus theory of superfluidity 309
    14.1 History of two-fluid equations 309
    14.2 First and second sound 312
    14.3 Dynamic structure factor in the two-fluid region 317
    15 Two-fluid hydrodynamics in a dilute Bose gas 322
    15.1 Equations of motion for local equilibrium 324
    15.2 Equivalence to the Landau two-fluid equations 331
    15.3 First and second sound in a Bose-condensed gas 339
    15.4 Hydrodynamic modes in a trapped normal Bose gas 345
    16 Variational formulation of the Landau
    two-fluid equations 349
    16.1 Zilsels variational formulation 350
    16.2 The action integral for two-fluid hydrodynamics 356
    16.3 Hydrodynamic modes in a trapped gas 359
    16.4 Two-fluid modes in the BCS-BEC crossover at unitarity 370
    17 The Landau-Khalatnikov two-fluid equations 371
    17.1 The Chapman-Enskog solution of the kinetic equation 372
    17.2 Deviation from local equilibrium 377
    17.3 Equivalence to Landau-Khalatnikov two-fluid equations 387
    17.4 The C12 collisions and the second viscosity coefficients 392
    18 Transport coefficients and relaxation times 395
    18.1 Transport coefficients in trapped Bose gases 396
    18.2 Relaxation times for the approach to local equilibrium 405
    18.3 Kinetic equations versus Kubo formulas 412
    19 General theory of damping of hydrodynamic modes 414
    19.1 Review of coupled equations for hydrodynamic modes 415
    19.2 Normal mode frequencies 418
    19.3 General expression for damping of hydrodynamic modes 420
    19.4 Hydrodynamic damping in a normal Bose gas 424
    19.5 Hydrodynamic damping in a superfluid Bose gas 428
    Appendix A Monte Carlo calculation of collision rates 431
    Appendix B Evaluation of transport coefficients:
    technical details 436
    Appendix C Frequency-dependent transport coefficients 444
    Appendix D Derivation of hydrodynamic damping formula 448
    References 451
    Index 459

    1995年,陷俘超冷原子气体玻色爱因斯坦凝聚的发现给玻色凝聚稀薄气体的理论和实验研究都带来了爆炸性的发展。本书提供了详细的超流玻色气体的非平衡态行为和双组分动力学理论。本书利用简单的微观模型,在无碰撞和碰撞为主的区域都给出了清晰明了的集体模式。 本书适合超冷原子物理,原子、分子和光物理,以及凝聚态物理领域的研究者和研究生阅读。

    1995年,陷俘超冷原子气体玻色爱因斯坦凝聚的发现给玻色凝聚稀薄气体的理论和实验研究都带来了爆炸性的发展。本书提供了详细的超流玻色气体的非平衡态行为和双组分动力学理论。格里芬、二国彻郎、扎伦巴编写的《有限温度玻色凝聚气体(影印版)》利用简单的微观模型,在无碰撞和碰撞为主的区域都给出了清晰明了的集体模式。本书适合超冷原子物理,原子、分子和光物理,以及凝聚态物理领域的研究者和研究生阅读。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购