《Transformer自然语言处理实战:使用Hugging Face Transformers库构建NLP应用》 本书涵盖了Transformer在NLP领域的主要应用。首先介绍Transformer模型和Hugging Face 生态系统。然后重点介绍情感分析任务以及Trainer API、Transformer的架构,并讲述了在多语言中识别文本内实体的任务,以及Transformer模型生成文本的能力,还介绍了解码策略和度量指标。接着深入挖掘了文本摘要这个复杂的序列到序列的任务,并介绍了用于此任务的度量指标。之后聚焦于构建基于评论的问答系统,介绍如何基于Haystack进行信息检索,探讨在缺乏大量标注数据的情况下提高模型性能的方法。最后展示如何从头开始构建和训练用于自动填充Python源代码的模型,并总结Transformer面临的挑战以及将这个模型应用于其他领域的一些新研null
Lewis Tunstall是Hugging Face机器学习工程师,致力于为NLP社区开发实用工具,并帮助人们更好地使用这些工具。
Leandro von Werra是Hugging Face机器学习工程师,致力于代码生成模型的研究与社区推广工作。
Thomas Wolf是Hugging Face首席科学官兼联合创始人,他的团队肩负着促进AI研究和普及的使命。