返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 数据分析与应用入门 Python版 潘晓,吴雷,王书海 编 大中专 文轩网
  • 新华书店正版
    • 作者: 潘晓 吴雷 王书海著
    • 出版社: 清华大学出版社
    • 出版时间:2022-12-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: 潘晓 吴雷 王书海著
    • 出版社:清华大学出版社
    • 出版时间:2022-12-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2023-02-01
    • 字数:430000
    • 页数:296
    • 开本:其他
    • 装帧:平装
    • ISBN:9787302621829
    • 国别/地区:中国
    • 版权提供:清华大学出版社

    数据分析与应用入门 Python版

    作  者:潘晓,吴雷,王书海 编
    定  价:59.8
    出 版 社:清华大学出版社
    出版日期:2022年12月01日
    页  数:296
    装  帧:平装
    ISBN:9787302621829
    主编推荐

    1.数据科学是一门新兴的热门科学,国内外大学纷纷设立了数据相关课程、专业。数据相关的书籍深受读者欢迎。 2.本书主要涉及数据分析方面基础内容,包括方法模型、分析步骤和数据分析报告专业等相关内容,适应于需要做数据分析的零基础人员使用。 3.本书将在现实真实的数据集,结合大量数据分析案例,贯穿全书,领域广泛。 4.本书适用于计算机科学与技术、数据科学、统计学、财务分析、大数据金融等需要进行数据分析的专业和领域。目前市场上对数据分析背景相关技能人员需求一直居高不下。 5.采用很受欢迎的编程语言Python作为分析工具,代码简洁性、易读性以及可扩展性,易上手。

    内容简介

    本书是数据分析类课程的入门教材,系统整理了数据分析的知识体系,以分析流程为主线阐述了数据分析的主要方法和基于Python的技术应用。 全书共分为9章,包括数据分析简介,数据分析的方法,NumPy和pandas基础,数据获取与导入,数据预处理,数据探索,数据挖掘概述,基本统计图形,文本、网络和地理空间可视化。从第2章开始,在阐述基础知识的同时设计了大量例题,按照“分析需求→Python代码展示→例题解析→运行结果”的模式对知识点进行剖析。全书提供习题、答案及程序源码。 本书可作为普通高等院校数据分析处理相关课程的学生的教材使用,也可供刚刚步入数据分析领域的从业人员参考。

    作者简介

    精彩内容

    目录
    第1章数据分析简介
    1.1开篇案例
    1.2认识数据
    1.2.1数据
    1.2.2数据类型
    1.3认识数据分析
    1.3.1数据管理的产生和发展
    1.3.2机器学习与人工智能
    1.4数据分析步骤
    1.5数据分析作用
    1.6常用数据分析工具
    1.7数据分析思维
    小结
    习题
    第2章数据分析的方法
    2.1针对现状分析的数据分析方法
    2.1.1对比分析法
    2.1.2分组分析法
    2.1.3结构分析法
    2.1.4平均分析法
    2.1.5综合评价分析法
    2.2针对原因分析的数据分析方法
    2.2.1交叉分析法
    2.2.2漏斗分析法
    2.2.3矩阵关联分析法
    2.2.4聚类分析法
    2.2.5帕累托分析法
    2.3针对预测分析的数据分析方法
    2.3.1回归分析法
    2.3.2时间序列分析法
    2.3.3决策树分析法
    2.3.4神经网络分析法
    小结
    习题
    第3章NumPy和pandas基础
    3.1NumPy基础
    3.1.1ndarray数组的创建
    3.1.2ndarray的常用属性
    3.1.3ndarray的数据类型
    3.1.4ndarray的算术操作
    3.1.5ndarray的索引和切片
    3.1.6对轴的理解

    3.2pandas基础
    3.2.1pandas数据结构
    3.2.2索引重命名与重新索引
    3.2.3数据基本操作
    小结
    习题
    第4章数据获取与导入
    4.1数据获取
    4.2网络爬虫
    4.2.1网页结构
    4.2.2爬虫的流程
    4.2.3爬虫Robots协议
    4.3数据导入与导出
    4.3.1一般文件
    4.3.2CSV文件
    4.3.3Excel文件
    4.3.4JSON文件
    4.3.5数据库
    小结
    习题
    第5章数据预处理
    5.1数据预处理的必要性
    5.2数据清洗
    5.2.1重复值检测与处理
    5.2.2缺失值检测与处理
    5.2.3噪声检测与处理
    5.3数据集成
    5.3.1实体识别问题
    5.3.2数据列冗余问题
    5.3.3数据值冲突问题
    5.4数据规约
    5.4.1策略概述
    5.4.2属性子集选择
    5.4.3抽样
    5.5数据变换
    5.5.1数据合并
    5.5.2数据抽取
    5.5.3数据计算
    小结
    习题
    第6章数据探索
    6.1基本统计描述
    6.1.1集中趋势
    6.1.2离散程度
    6.1.3分布形状
    6.2数据分组与聚合分析
    6.2.1数据分组
    6.2.2数据聚合
    6.3交叉分析
    6.3.1数据透视表
    6.3.2数据交叉表
    6.4参数估计及假设检验
    6.4.1参数估计
    6.4.2假设检验
    6.5相关分析
    6.5.1简单相关分析
    6.5.2偏相关分析
    6.5.3非参数相关分析
    小结
    习题
    第7章数据挖掘概述
    7.1什么是数据挖掘
    7.2数据挖掘问题与任务
    7.3分类分析
    7.3.1预备知识
    7.3.2解决分类问题的一般方法
    7.3.3代表性方法之一: K最近邻算法
    7.3.4评估分类器性能的度量
    7.4关联分析
    7.4.1购物篮分析
    7.4.2频繁项集和关联规则
    7.4.3基于Python的Apriori算法
    7.4.4关联模式的评估
    7.5聚类分析
    7.5.1什么是聚类分析
    7.5.2基本的聚类方法
    7.5.3代表性方法之一: k均值
    7.5.4聚类评估
    小结
    习题
    第8章基本统计图形
    8.1Matplotlib绘图
    8.1.1图形基本设置
    8.1.2基本统计图形
    8.2pandas绘图
    8.3Seaborn绘图
    8.3.1单变量数据分布
    8.3.2双变量数据分布
    8.3.3多变量数据分布
    小结
    习题
    第9章文本、网络和地理空间可视化
    9.1文本可视化
    9.1.1分词
    9.1.2词云
    9.2网络图可视化
    9.2.1网络与图
    9.2.2NetworkX绘图
    9.3地理空间可视化
    9.3.1GeoPandas和Basemap
    9.3.2分级统计地图
    9.3.3点描法地图
    9.3.4带气泡的地图
    小结
    习题
    参考文献

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购