返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 面向芯片、器件与系统的先进液态金属冷却 刘静 著 专业科技 文轩网
  • 新华书店正版
    • 作者: 刘静著
    • 出版社: 上海科学技术出版社
    • 出版时间:2020-01-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: 刘静著
    • 出版社:上海科学技术出版社
    • 出版时间:2020-01-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2020-01-01
    • 字数:970000
    • 页数:660
    • 开本:16开
    • 装帧:平装
    • ISBN:9787547845325
    • 国别/地区:中国
    • 版权提供:上海科学技术出版社

    面向芯片、器件与系统的先进液态金属冷却

    作  者:刘静 著
    定  价:598
    出 版 社:上海科学技术出版社
    出版日期:2020年01月01日
    页  数:660
    装  帧:精装
    ISBN:9787547845325
    主编推荐

    内容简介

    随着微纳电子技术的飞速发展,高集成度芯片、光电器件与系统等引发的热障问题,已成为制约其可持续发展的关键瓶颈。这种发展瓶颈对优选散热技术提出了靠前的要求。在这种背景下,本书作者于2001年前后首次在芯片冷却领域引入具有通用性的液态金属散热技术,随后在国内外引发重大反响和后续大量研究,成为近年来该领域内前沿热点和极具应用前景的重大发展方向之一。影响范围甚广,正为能源、电子信息、优选制造、国防军事等领域的发展带来颠覆性变革,并将催生出一系列战略性新兴产业。 为推动这一新兴学科领域的可持续健康发展,本书作者将其十七八年的研究成果系统梳理和总结,编撰成本专著。本书系统围绕液态金属散热技术,集中阐述了其中涉及的新方法、新原理与典型应用,基本涵盖了液态金属芯片散热领域中的所有重大主题,包括:液态金属的基础热物理特性、流动特性、材料相容性、驱动方法、传热特性、微通道散热技术、相变热控技术以及一些实际器件的null

    作者简介

    精彩内容

    目录
    Chapter 1Introduction1
    1.1Increasing Challenges in Advanced Cooling2
    1.2Water Cooling and New Alternatives4
    1.3Basic Features of Conventional Heat Exchangers6
    1.3.1Heat Exchanger Classification by Geometry and Structure7
    1.3.2Heat Exchange Enhancement Techniques12
    1.4Limitations of Waterbased Heat Exchanger13
    1.4.1Overall Properties of Water13
    1.4.2Adhesion and Cohesion14
    1.4.3Surface Tension14
    1.4.4Specific Heat14
    1.4.5Conductivity15
    1.5Liquid Metal Coolant for Chip Cooling15
    1.6Some Facts about Liquid Metal17
    1.7Revisit of Traditional Liquid Metal Cooling19
    1.8Liquid Metal Enabled Innovation on Conventional Heat Exchanger22
    1.9Potential Application Areas of Liquid Metal Thermal Management 23
    1.9.1Chip Cooling23
    1.9.2Heat Recovery25
    1.9.3Energy System27
    1.9.4Heat Transfer Process Engineering28
    1.9.5Aerospace Exploration28
    1.9.6Appliances in Large Power Systems29
    1.9.7Thermal Interface Material29
    1.9.8More New Conceptual Applications31
    1.10Technical and Scientific Challenges in Liquid Metal Heat Transfer 32
    1.11Conclusion35
    References36
    Chapter 2Typical Liquid Metal Medium and Properties for Advanced Cooling44
    2.1Typical Properties of Liquid Metals45
    2.1.1Low Melting Point45
    2.1.2Thermal Conductivity45
    2.1.3Surface Tension48
    2.1.4Heat Capacity49
    2.1.5Boiling Temperature50
    2.1.6Subcooling Point50
    2.1.7Viscosity51
    2.1.8Electrical Properties52
    2.1.9Magnetic Properties52
    2.1.10Chemical Properties52
    2.2Alloy Candidates with Low Melting Point53
    2.2.1Overview53
    2.2.2GaIn Alloy53
    2.2.3NaK Alloy55
    2.2.4Woods Metal55
    2.3Nano Liquid Metal as More Conductive Coolant or Grease55
    2.3.1Technical Concept of Nano Liquid Metal55
    2.3.2Performance of Typical Nano Liquid Metals56
    2.4Liquid Metal Genome towards New Material Discovery61
    2.4.1About Liquid Metal Material Genome61
    2.4.2Urgent Needs on New Liquid Metals62
    2.4.3Category of Room Temperature Liquid Metal Genome62
    2.5Fundamental Routes toward Finding New Liquid Metal Materials64
    2.5.1Alloying Strategy from Single Metal Element64
    2.5.2Making Composite from Binary Liquid Alloys65
    2.5.3Realizing Composite from Multicomponent Liquid Alloys66
    2.5.4Nano Technological Strategies66
    2.5.5Additional Physical Approaches66
    2.5.6Chemical Strategies67
    2.6Fundamental Theories for Material Discovery68
    2.6.1Calculation of Phase Diagram (CALPHAD)68
    2.6.2First Principle Prediction69
    2.6.3Molecular Dynamics Simulation69
    2.6.4Other Theoretical Methods70
    2.7Experimental Ways for Material Discovery70
    2.8Theoretical and Technical Challenges71
    2.9Conclusion73
    References73Chapter 3Fabrications and Characterizations of Liquid Metal Cooling
    Materials80
    3.1Preparation Methods81
    3.1.1Alloying81
    3.1.2Oxidizing81
    3.1.3Fabrication of Liquid Metal Droplets82
    3.1.4Preparation of Liquid Metal Nano Particles83
    3.1.5Coating of Liquid Metal Surface84
    3.1.6Loading with Nano Materials86
    3.1.7Compositing with Other Materials87
    3.2Characterizations of Functional Liquid Metal Materials87
    3.2.1Regulation of Thermal Properties88
    3.2.2Regulation of Electrical Properties88
    3.2.3Regulation of Magnetic Properties89
    3.2.4Regulation of Fluidic Properties89
    3.2.5Regulation of Chemical Properties89
    3.3Liquid Metal as Energy Harvesting or Conversion Medium90
    3.4Low Temperature Liquid Metal Used in Harsh Environment91
    3.4.1Working of Liquid Metal under Cryogenic Situation91
    3.4.2Basics about Cryogenic Cooling92
    3.5Potential Metal Candidates with Melting Point below Zero
    Centigrade 94
    ……
    Flow487
    11.4.3Convection Coefficient under Different Coolant VolumeFlow488
    11.4.4Thermal Resistance under Different Pump Power489
    11.4.5Flow Pattern Discrimination490
    11.4.6Flow Resistance Comparison491
    11.4.7Convective Heat Transfer Coefficient Comparison492
    11.4.8Other Flowing Issues493
    11.4.9Liquid Metal Alloybased Mini Channel Heat Exchanger494
    11.5Hybrid Mini/micro Channel Heat Sink Based on Liquid Metal and Water494
    11.5.1Hybrid Mini/micro Channel Heat Sink495
    11.5.2Materials496
    11.5.3Test Platform497
    11.5.4Cooling Capability Comparison with Pure Water CoolingSystem498
    11.6Flow and Thermal Modeling and Optimization of Micro/mini Channel Heat Sink502
    11.6.1About Micro/mini Channel Heat Sink502
    11.6.2Flow and Thermal Model503
    11.6.3Optimization of Micro/mini Channel Heat Sink505
    11.6.4Micro Channel Water Cooling505
    11.6.5Channel Aspect Ratio506
    11.6.6Channel Number and Width Ratio507
    11.6.7Velocity508
    11.6.8Base Thickness509
    11.6.9Structural Material510
    11.6.10Mini Channel Liquid Metal Cooling510
    11.6.11Mini Channel Water Cooling513
    11.7Conclusion514
    References515Chapter 12Hybrid Cooling via Liquid Metal and Aqueous Solution517
    12.1Electrically Driven Hybrid Cooling via Liquid Metal and Aqueous Solution518
    12.1.1Coolants and Driving Strategy518
    12.1.2System Designing519
    12.1.3Continuous Actuation of Liquid Metal Spheres Circular Motion519
    12.1.4Heat Transfer Performance520
    12.1.5Thermal Resistance Components521
    12.1.6Heat Transfer Capacity under Different Driving Voltages522
    12.1.7Electrical Driving of Liquid Metal Droplet523
    12.1.8Liquid Metal Droplets Periodic Circular Motion in Different Conditions 524
    12.1.9More Potential Coolants with Improved Performances525
    12.2Alternating Electric Field Actuated Liquid Metal Cooling526
    12.2.1Liquid Metal as Water Driving Pump526
    12.2.2Performance of the Liquid Metal Droplet Driven Flow527
    12.3Selfdriving Thermopneumatic Liquid Metal Cooling or Energy Harvesting535
    12.3.1Hybrid Coolants towards Automatic Heating Driving535
    12.3.2Running of Thermopneumatic Liquid Metal Energy Harvester536
    12.4Hybrid Liquid Metalwater Cooling System for Heat Dissipation541
    12.4.1Combined Liquid Metal Heat Transport and Water Cooling541
    12.4.2Working Performances of Combined Liquid Metal and Water Cooling542
    12.4.3Theoretical Analysis on Combined Liquid Metal and Water Cooling547
    12.5Electromagnetic Driving Rotation of Hybrid Liquid Metal and Solution Pool551
    12.5.1Electromagnetic Driving Rotation of Hybrid Fluids551
    12.5.2Rotational Motion of Liquid Metal in Electromagnetic Field552
    12.5.3Controlling the Rotating Motion of Liquid Metal Pool555
    12.5.4Liquid Metal Patterns Induced by Electric Capillary Force559
    12.6Dynamic Interactions of Leidenfrost Droplets on Liquid Metal Surface566
    12.7Conclusion574
    References575Chapter 13Liquid Metal for the Harvesting of Heat and Energy577
    13.1Direct Harvesting of Solar Thermal Power or Lowgrade Heat580
    13.2Liquid Metalbased Thermoelectric Generation581
    13.3Thermionic Technology587
    13.4Liquid Metalbased MHD Power Generation589
    13.5Alkali Metalbased Thermoelectric Conversion Technology590
    13.6Direct Solar Thermoelectric Power Generation591
    13.7Liquid Metal Cooled Photovoltaic Cell596
    13.7.1Thermal Management for Optical Concentration Solar Cells596
    13.7.2Experimental System597
    13.7.3Performance Evaluation598
    13.7.4Theoretical Evaluation on Thermal Resistance601
    13.8Solar Thermionic Power Generation605
    13.9MHD and AMTEC Technology609
    13.10Cascade System612
    13.11Remarks and Future Developments614
    13.12Harvesting Heat to Generate Electricity via Liquid Metal Thermosyphon Effect616
    13.13Liquid Metal Thermal Joint619
    13.14Conclusion626
    References626
    Chapter 14Combinatorial Liquid Metal Heat Transfer towards Extreme
    Cooling630
    14.1Proposition of Combinatorial Liquid Metal Heat Transfer630
    14.2Basic Cooling System633
    14.2.1Abstract Division of A Cooling System633
    14.2.2Heat Acquisition Segment635
    14.2.3Heat Rejection Segment637
    14.2.4Heat Transport Segment637
    14.3LMPM PCM Combined Cooling System639
    14.3.1LMPM PCM Cooling639
    14.3.2LMPM PCM Against Thermal Shock642
    14.4Liquid Metal Convectionbased Cooling Systems642
    14.5All Liquid Metal Combined Cooling System645
    14.6Other Alternative Combinations645
    14.7Conclusion646
    References647
    Appendix653
    Index656

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购