文轩网图书旗舰店
  • 扫码下单

  • 现代傅里叶分析 第3版 (美)L.格拉法克斯 著 文教 文轩网
  • 新华书店正版
    • 作者: (美)L.格拉法克斯著
    • 出版社: 其他
    • 出版时间:2017-08-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    店铺装修中

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    文轩网图书旗舰店

  •      https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: (美)L.格拉法克斯著
    • 出版社:其他
    • 出版时间:2017-08-01 00:00:00
    • 版次:1
    • 印次:2
    • 印刷时间:2020-08-01
    • 字数:518000
    • 页数:648
    • 开本:24开
    • 装帧:平装
    • ISBN:9787519226145
    • 国别/地区:中国
    • 版权提供:其他

    现代傅里叶分析 第3版

    作  者:(美)L.格拉法克斯 著
    定  价:109
    出 版 社:世界图书出版有限公司北京分公司
    出版日期:2017年08月01日
    页  数:648
    装  帧:平装
    ISBN:9787519226145
    主编推荐

    内容简介

    这部两卷集的作品旨在为读者提供学习欧几里得调和解析领域的理论基础,各章有习题及提示。原始版本是以单卷集发布的,但是由于其体积、范围和新材料的增加,第2版改为两卷集发行,新增时频分析和Carleson-Hunt定理等内容。第3版在第2版的基础上修订新增一些章节,并将加权不等式一章从《现代傅里叶分析》调整到《经典傅里叶分析》,新增若干实例和应用内容,以及一些习题和提示。《经典傅里叶分析》涵盖许多基础经典论题,包括插值空间、傅里叶级数、傅里叶变换、极大值函数、奇异积分、Littlewood-Paley定理和加权不等式。《现代傅里叶分析》包括更多现代论题,如函数空间、原子分解、非卷积型的奇异积分。

    作者简介

    精彩内容

    目录
    1 Smoothness and Function Spaces
    1.1 Smooth Functions and Tempered Distributions
    1.1.1 Space of Tempered Distributions Modulo Polynomials
    1.1.2 Calder6n Reproducing Formula
    Exercises
    1.2 Laplacian,Riesz Potentials,and Bessel Potentials
    1.2.1 Riesz Potentials
    1.2.2 Bessel Potentials
    Exercises
    1.3 Sobolev Spaces
    1.3.1 Definition and Basic Properties of General Sobolev Spaces
    1.3.2 Littlewood-Paley Characterization of Inhomogeneous Sobolev Spaces
    1.3.3 Littlewood-Paley Characterization of Homogeneous Sobolev Spaces
    Exercises
    1.4 Lipschitz Spaces
    1.4.1 Introduction to Lipschitz Spaces
    1.4.2 Littlewood-Paley Characterization of Homogeneous Lipschitz Spaces
    1.4.3 Littlewood-Paley Characterization of Inhomogeneous Lipschitz Spaces
    Exercises
    2 Hardy Spaces,Besov Spaces,and Triebel-Lizorkin Spaces
    2.1 Hardy Spaces
    2.1.1 Definition of Hardy Spaces
    2.1.2 Quasi-norm Equivalence of Several Maximal Functions
    2.1.3 Consequences of the Characterizations of Hardy Spaces
    2.1.4 Vector-Valued Hp and Its Characterizations
    2.1.5 Singular Integrals on vector-valued Hardy Spaces
    Exercises
    2.2 Function Spaces and the Square Function Characterization of Hardy Spaces
    2.2.1 Introduction to Function Spaces
    2.2.2 Properties of Functions with Compactly Supported Fourier Transforms
    2.2.3 Equivalence of Function Space Norms
    2.2.4 The Littlewood-Paley Characterization of Hardy Spaces
    Exercises
    2.3 Atomic Decomposition of Homogeneous Triebel-Lizorkin Spaces
    2.3.1 Embeddings and Completeness of Triebel-Lizorkin Spaces
    2.3.2 The Space of Triebel-Lizorkin Sequences
    2.3.3 The Smooth Atomic Decomposition of Homogeneous Triebel-Lizorkin Spaces
    2.3.4 The Nonsmooth Atomic Decomposition of Homogeneous Triebel-Lizorkin Spaces
    2.3.5 Atomic Decomposition of Hardy Spaces
    Exercises
    2.4 Singular Integrals on Function Spaces
    2.4.1 Singular Integrals on the Hardy Space H1
    2.4.2 Singular Integrals on Besov-Lipschitz Spaces
    2.4.3 Singular Integrals on HP(Rn)
    2.4.4 A Singular Integral Characterization of H1(Rn)
    Exercises
    3 BMO and Carleson Measures
    3.1 Functions of Bounded Mean Oscillation
    3.1.1 Definition and Basic Properties of BMO
    3.1.2 The John-Nirenberg Theorem
    3.1.3 Consequences of Theorem 3
    Exercises
    3.2 Duality between H1 and BMO
    Exercises
    3.3 Nontangential Maximal Functions and Carleson Measures
    3.3.1 Definition and Basic Properties of Carleson Measures
    3.3.2 BMO Functions and Carleson Measures
    Exercises
    3.4 The Sharp Maximal Function
    3.4.1 Definition and Basic Properties of the Sharp Maximal Function
    3.4.2 A Good Lambda Estimate for the Sharp Function
    3.4.3 Interpolation Using BMO
    3.4.4 Estimates for Singular Integrals Involving the Sharp Function
    Exercises
    3.5 Commutators of Singular Integrals with BMO Functions
    3.5.1 An Orlicz-Type Maximal Function
    3.5.2 A Pointwise Estimate for the Commutator
    3.5.3 LP Boundedness of the Commutator
    Exercises
    4 Singular Integrals of Nonconvolution Type
    4.1 General Background and the Role of BMO
    4.1.1 Standard Kernels
    4.1.2 Operators Associated with Standard Kernels
    4.1.3 Calderon-Zygmund Operators Acting on Bounded Functions
    Exercises
    4.2 Consequences of L2Boundedness
    4.2.1 mWeak Type(1,1) and LP Boundedness of Singular Integrals、
    4.2.2 Boundedness of Maximal Singular Integrals
    4.2.3 H1→L1 and L∞→BMO Boundedness of Singular Integrals
    Exercises
    4.3 The T(1) Theorem
    4.3.1 Preliminaries and Statement of the Theorem
    4.3.2 The Proof of Theorem 4
    4.3.3 An Application
    Exercises
    4.4 Paraproducts
    4.4.1 Introduction to Paraproducts
    4.4.2 L2 Boundedness of Paraproducts
    ……

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购