返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 几何三部曲(第2卷几何的代数方法)(英文版) (比)F.博斯克斯 著 专业科技 文轩网
  • 新华书店正版
    • 作者: (比)F.博斯克斯著
    • 出版社: 世界图书出版公司
    • 出版时间:2017-01-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: (比)F.博斯克斯著
    • 出版社:世界图书出版公司
    • 出版时间:2017-01-01 00:00:00
    • 版次:1
    • 印次:2
    • 印刷时间:2020-08-01
    • 字数:355000
    • 页数:430
    • 开本:24开
    • 装帧:平装
    • ISBN:9787519220754
    • 国别/地区:中国
    • 版权提供:世界图书出版公司

    几何三部曲(第2卷几何的代数方法)(英文版)

    作  者:(比)F.博斯克斯 著
    定  价:79
    出 版 社:世界图书出版公司
    出版日期:2017年01月01日
    页  数:430
    装  帧:平装
    ISBN:9787519220754
    主编推荐

    内容简介

    复投影平面中代数曲线的研究是几何应用如密码技术研究的重要内容,也是线性几何研究向代数几何研究的自然过渡。本书论述了几何空间中的各种不同代数方法,给出了解析几何、仿射几何、欧几里得几何和投影几何研究的具体内容,并详尽地描述了各类几何空间和代数曲线的性质。

    作者简介

    精彩内容

    目录
    1 The Birth of Analytic Geometry
    1.1 Fermat's Analytic Geometry
    1.2 Descartes' Analytic Geometry
    1.3 More on Cartesian Systems of Coordinates
    1.4 Non-Cartesian Systems of Coordinates
    1.5 Computing Distances and Angles
    1.6 Planes and Lines in Solid Geometry
    1.7 The Cross Product
    1.8 Forgetting the Origin
    1.9 The Tangent to a Curve
    1.10 The Conics
    1.11 The Ellipse
    1.12 The Hyperbola
    1.13 The Parabola
    1.14 The Quadrics
    1.15 The Ruled Quadrics
    1.16 Problems
    1.17 Exercises
    2 Affine Geometry
    2.1 Affine Spaces over a Field
    2.2 Examples of Affine Spaces
    2.3 Affine Subspaces
    2.4 Parallel Subspaces
    2.5 Generated Subspaces
    2.6 Supplementary Subspaces
    2.7 Lines and Planes
    2.8 Barycenters
    2.9 Barycentric Coordinates
    2.10 Triangles
    2.11 Parallelograms
    2.12 Affine Transformations
    2.13 Affine Isomorphisms
    2.14 Translations
    2.15 Projections
    2.16 Symmetries
    2.17 Homotheties and Affinities
    2.18 The Intercept Thales Theorem
    2.19 Affine Coordinates
    2.20 Change of Coordinates
    2.21 The Equations of a Subspace
    2.22 The Matrix of an Affine Transformation
    2.23 The Quadrics
    2.24 The Reduced Equation of a Quadric
    2.25 The Symmetries of a Quadric
    2.26 The Equation of a Non-degenerate Quadric
    2.27 Problems
    2.28 Exercises
    3 More on Real Affine Spaces
    3.1 About Left, Right and Between
    3.2 Orientation of a Real Affine Space
    3.3 Direct and Inverse Affine Isomorphisms
    3.4 Parallelepipeds and Half Spaces
    3.5 Pasch's Theorem
    3.6 Affine Classification of Real Quadrics
    3.7 Problems
    3.8 Exercises
    4 Euclidean Geometry
    4.1 Metric Geometry
    4.2 Defining Lengths and Angles
    4.3 Metric Properties of Euclidean Spaces
    4.4 Rectangles, Diamonds and Squares
    4.5 Examples of Euclidean Spaces
    4.6 Orthonormal Bases
    4.7 Polar Coordinates
    4.8 Orthogonal Projections
    4.9 Some Approximation Problems
    4.10 Isometries
    4.11 Classification of Isometries
    4.12 Rotations
    4.13 Similarities
    4.14 Euclidean Quadrics
    4.15 Problems
    4.16 Exercises
    5 Hermitian Spaces
    5.1 Hermitian Products
    5.2 Orthonormal Bases
    5.3 The Metric Structure of Hermitian Spaces
    5.4 Complex Quadrics
    5.5 Problems
    5.6 Exercises
    6 Projective Geometry
    6.1 Projective Spaces over a Field
    6.2 Projective Subspaces
    6.3 The Duality Principle
    6.4 Homogeneous Coordinates
    6.5 Projective Basis
    6.6 The Anharmonic Ratio
    6.7 Projective Transformations
    6.8 Desargues' Theorem
    6.9 Pappus' Theorem
    6.10 Fano's Theorem
    6.11 Harmonic Quadruples
    6.12 The Axioms of Projective Geometry
    6.13 Projective Quadrics
    6.14 Duality with Respect to a Quadric
    6.15 Poles and Polar Hyperplanes
    6.16 Tangent Space to a Quadric
    6.17 Projective Conics
    6.18 The Anharmonic Ratio Along a Conic
    6.19 The Pascal and Brianchon Theorems
    6.20 Affine Versus Projective
    6.21 Real Quadrics
    6.22 The Topology of Projective Real Spaces
    6.23 Problems
    6.24 Exercises
    7 Algebraic Curves
    7.1 Looking for the Right Context
    7.2 The Equation of an Algebraic Curve
    7.3 The Degree of a Curve
    7.4 Tangents and Multiple Points
    7.5 Examples of Singularities
    7.6 Inflexion Points
    7.7 The Bezout Theorem
    7.8 Curves Through Points
    7.9 The Number of Multiplicities
    7.10 Conics
    7.11 Cubics and the Cramer Paradox
    7.12 Inflexion Points of a Cubic
    7.13 The Group of a Cubic
    7.14 Rational Curves
    7.15 A Criterion of Rationality
    7.16 Problems
    7.17 Exercises
    Appendix A Polynomials over a Field
    A.1 Polynomials Versus Polynomial Functions
    A.2 Euclidean Division
    A.3 The Bezout Theorem
    A.4 Irreducible Polynomials
    A.5 The Greatest Common Divisor
    A.6 Roots of a Polynomial
    A.7 Adding Roots to a Polynomial
    A.8 The Derivative of a Polynomial
    Appendix B Polynomialsin Several Variables
    B.1 Roots
    B.2 Polynomial Domains
    B.3 Quotient Field
    B.4

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购