返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 酉反射群(英文)/国外优秀数学著作原版系列
  • 新华书店正版
    • 作者: (澳)古斯塔夫·I.莱勒(Gustav I. Lehrer),(澳)唐纳德·E.泰勒(Donald E. Taylor)著著
    • 出版社: 哈尔滨工业大学出版社
    • 出版时间:2020-11-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: (澳)古斯塔夫·I.莱勒(Gustav I. Lehrer),(澳)唐纳德·E.泰勒(Donald E. Taylor)著著
    • 出版社:哈尔滨工业大学出版社
    • 出版时间:2020-11-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2020-11-01
    • 字数:378000
    • 页数:0
    • 开本:16开
    • 装帧:平装
    • ISBN:9787560391946
    • 国别/地区:中国
    • 版权提供:哈尔滨工业大学出版社

    酉反射群(英文)/国外优秀数学著作原版系列

    作  者:(澳)古斯塔夫·I.莱勒(Gustav I. Lehrer),(澳)唐纳德·E.泰勒(Donald E. Taylor)著 著
    定  价:58
    出 版 社:哈尔滨工业大学出版社
    出版日期:2020年11月01日
    页  数:0
    装  帧:平装
    ISBN:9787560391946
    主编推荐

    内容简介

    复反射是固定在超平面上每个点的线性变换,它类似于通过万花筒或镜子排列观看图像时所经历的转换。本书使用线性变换的方法对n维复空间中由复反射产生的所有变换组进行了完整的分类,对不可约群进行了详细的研究,对反射群的反射子群进行了完整的分类,充分讨论了反射群元素的本征空间理论。书中附录还概述了表示论、拓扑学和数学物理之间的联系。本书包含了100多个从简单到具有一定难度的练习题,适合大学师生、研究生及数学爱好者参考阅读,也适合代数、拓扑学和数学物理的研究人员参考阅读。

    作者简介

    精彩内容

    目录
    Introduction
    1. Overview of this book
    2. Some detail concerning the content
    3. Acknowledgements
    4. Leitfaden
    Chapter 1. Preliminaries
    1. Hermitian forms
    2. Reflections
    3. Groups
    4. Modules and representations
    5. Irreducible unitary reflection groups
    6. Caftan matrices
    7. The field of definition
    Exercises
    Chapter 2. The groups G(m, p, n)
    1. Primitivity and imprimitivity
    2. Wreath products and monomial representations
    3. Properties of the groups G(m, p, n)
    4. The imprimitive unitary reflection groups
    5. Imprimitive subgroups of primitive reflection groups
    6. Root systems for G(m, p, n)
    7. Generators for G(m, p, n)
    8. Invariant polynomials for G(m,p, n)
    Exercises
    Chapter 3. Polynomial invariants
    1. Tensor and symmetric algebras
    2. The algebra of invariants
    3. Invariants of a finite group
    4. The action of a reflection
    5. The Shephard-Todd--Chevalley Theorem
    6. The coinvariant algebra
    Exercises
    Chapter 4. Poincare series and characterisations of reflection groups
    1. Poincare series
    2. Exterior and symmetric algebras and Molien's Theorem
    3. A characterisation of finite reflection groups
    4. Exponents
    Exercises
    Chapter 5. Quaternions and the finite subgroups of SU2 (C)
    1. The quaternions
    2. The groups Oa (R) and 04 (R)
    3. The groups SU2 (C) and U2 (C)
    4. The finite subgroups of the quaternions
    5. The finite subgroups of S03 (R) and SU2 (C)
    6. Quaternions, reflections and root systems
    Exercises
    Chapter 6. Finite unitary reflection groups of rank two
    1. The primitive reflection subgroups of U2 (C)
    2. The reflection groups of type T
    3. The reflection groups of type O
    4. The reflection groups of type I
    5. Cartan matrices and the ring of definition
    6. Invariants
    Exercises
    Chapter 7. Line systems
    1. Bounds online systems
    2. Star-closed Euclidean line systems
    3. Reflections and star-closed line systems
    4. Extensions of line systems
    5. Line systems for imprimitive reflection groups
    6. Line systems for primitive reflection groups
    7. The Goethals-Seidel decomposition for 3-systems
    8. Extensions of D(2) and Dn(3)
    9. Further structure of line systems in Cn
    10. Extensions of Euclidean line systems
    11. Extensions of.An, gn and Kn in Cn
    12. Extensions of 4-systems
    Exercises
    Chapter 8. The Shephard and Todd classification
    1. Outline of the classification
    2. Blichfeldt's Theorem
    3. Consequences of Blichfeldt's Theorem
    4. Extensions of 5-systems
    5. Line systems and reflections of order three
    6. Extensions of ternary 6-systems
    7. The classification
    8. Root systems and the ring of definition
    9. Reduction modulo p
    10. Identification of the primitive reflection groups
    Exercises
    Chapter 9. The orbit map, harmonic polynomials and semi-invariants
    1. The orbit map
    2. Skew invariants and the Jacobian
    3. The rank of the Jacobian
    4. Semi-invariants
    5. Differential operators
    6. The space of G-harmonic polynomials
    7. Steinberg's fixed point theorem
    Exercises
    Chapter 10. Covariants and related polynomial identities
    1. The space of covariants
    2. Gutkin's Theorem
    3. Differential invariants
    4. Some special cases of covariants
    5. Two-variable Poincar6 series and specialisations
    Exercises
    Chapter 11. Eigenspace theory and reflection subquotients
    1. Basic affine algebraic geometry
    2. Eigenspaces of elements of reflection groups
    3. Reflection subquotients of unitary reflection groups
    4. Regular elements
    5. Properties of the reflection subquotients
    6. Eigenvalues of pseudoregular elements
    Chapter 12. Reflection cosets and twisted invariant theory
    1. Reflection cosets
    2. Twisted invariant theory
    3. Eigenspace theory for reflection cosets
    4. Subquotients and centralisers
    5. Parabolic subgroups and the coinvariant algebra
    6. Duality groups
    Exercises
    Appendix A. Some backgrou

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购