返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 新能源材料与器件导论 吴宇平,朱玉松,(南非)特尼斯·范·雷 编 专业科技 文轩网
  • 新华书店正版
    • 作者: 暂无著
    • 出版社: 化学工业出版社
    • 出版时间:2020-10-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: 暂无著
    • 出版社:化学工业出版社
    • 出版时间:2020-10-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2020-10-01
    • 字数:552000
    • 页数:336
    • 开本:16开
    • 装帧:平装
    • ISBN:9787122371843
    • 国别/地区:中国
    • 版权提供:化学工业出版社

    新能源材料与器件导论

    作  者:吴宇平,朱玉松,(南非)特尼斯·范·雷 编
    定  价:198
    出 版 社:化学工业出版社
    出版日期:2020年10月01日
    页  数:336
    装  帧:精装
    ISBN:9787122371843
    主编推荐

    内容简介

    以太阳能、风能、潮汐能、生物质能和核能等为代表的可再生能源和与其配套的电化学储能系统组成的现代能源体系,正逐步取代传统化石能源。世界各国正全面布局,争取占领该领域的技术制高点。新能源材料与器件是实现新能源转化和利用,以及新能源技术规模化应用的关键,是发展新能源汽车、可再生能源、智能电网、新材料、节能环保、高端装备制造等战略性新兴产业的重要支撑,更成为各国加大技术投入的重点。
    《Introduction to New Energy Materials and Devices》一书,全面系统地介绍太阳能、氢能、生物质能、核能、动力电池、储能和燃料电池等研究的基础知识和近期新进展。以储能和换能为顺序,先系统介绍了目前电化学储能系统,如锂离子电池、其他新型电池和超级电容器的工作机理、发展历史和近期新进展;接着介绍了常见的换能系统如燃料电池、太阳能电池、太阳能制氢的研究现状和未来趋势;最null

    作者简介

     

    精彩内容

    目录
    Chapter 1 Introduction 001
    1.1 Brief introduction to world energy consumption 001
    1.2 History of various new energy materials and devices 006
    1.2.1 Batteries 006
    1.2.2 Supercapacitors 008
    1.2.3 Fuel cells 009
    1.2.4 Solar cells 010
    1.2.5 Biomass energy 012
    1.2.6 Nuclear energy 012
    1.3 Principles of various new energy materials and devices 013
    1.3.1 Principles of metal-ion secondary batteries 013
    1.3.2 Principles of other secondary batteries 014
    1.3.3 Principles of fuel cells 015
    1.3.4 Principles of supercapacitors 017
    1.3.5 Principles of solar cells 017
    1.3.6 Principles of solar-to-hydrogen 018
    1.3.7 Principles of biomass energy 019
    1.3.8 Principles of nuclear energy 019
    1.4 Some requirements for various new energy materials and devices 020
    1.4.1 Requirements for lithium secondary batteries 020
    1.4.2 Requirements of other secondary batteries 020
    1.4.3 Requirements of fuel cells 022
    1.4.4 Requirements of supercapacitors 023
    1.4.5 Requirements of solar cells 023
    1.4.6 Requirements of solar-to-hydrogen conversion 023
    1.4.7 Requirements of biomass energy 024
    1.4.8 Requirements of nuclear energy 024
    1.5 About this book 024
    References 025
    Chapter 2 Lithium secondary batteries 028
    2.1 Positive electrode materials for LIBs 029
    2.1.1 LiCoO2-based positive electrode materials 030
    2.1.2 LiNiO2-based positive electrode materials 031
    2.1.3 LiMn2O4-based positive electrode materials 032
    2.1.4 LiFePO4-based positive electrode materials 034
    2.1.5 LiNi1-x-yCoxMnyO2 (NCM) positive electrode materials 034
    2.2 Negative electrode materials for LIBs 036
    2.2.1 Graphite 036
    2.2.2 Si-based materials 038
    2.2.3 Titanium oxides 038
    2.3 Electrolytes for LIBs 039
    2.3.1 Liquid electrolytes 040
    2.3.2 Solid electrolytes 043
    2.4 Separators for LIBs 045
    2.4.1 The functions and characteristics of the separator 045
    2.4.2 Separator types 046
    2.4.3 Separator preparation methods 047
    2.5 Aqueous rechargeable lithium batteries 049
    2.5.1 First generation aqueous rechargeable lithium batteries 050
    2.5.2 Second generation aqueous rechargeable lithium batteries 051
    2.5.3 Third generation aqueous rechargeable lithium batteries 052
    2.5.4 Side-reactions with H2O and O2 in an electrolyte 053
    2.5.5 Water-in-salt aqueous rechargeable lithium batteries 054
    2.6 Li-sulfur batteries 054
    2.6.1 Principles of Li-sulfur batteries 055
    2.6.2 Sulfur positive electrodes 056
    2.6.3 Electrolytes for Li-sulfur batteries 056
    2.7 Li-air batteries 057
    2.7.1 Water-based lithium-air batteries 059
    2.7.2 Organic lithium-air batteries 059
    2.7.3 Water-organic two-liquid system lithium-air batteries 059
    2.7.4 Solid-state lithium-air batteries 060
    2.7.5 Ionic liquid system lithium-air batteries 060
    References 060
    Chapter 3 Other secondary batteries 065
    3.1 Redox flow batteries 065
    3.1.1 Polysulfide bromide battery (PSB) 068
    3.1.2 ZNBR battery 068
    3.1.3 Vanadium redox flow battery (VFB) 069
    3.2 Na-S battery 070
    3.2.1 Principle of operation 070
    3.2.2 The configuration of the NAS battery 072
    3.2.3 NAS battery features 073
    3.2.4 Composition and crystalline structure of b-alumina 074
    3.2.5 Challenges of NAS batteries 075
    3.3 Other metal-air batteries 075
    References 079
    Chapter 4 Fuel cells 082
    4.1 Introduction 082
    4.1.1 Some history 082
    4.1.2 Ordinary fuel cells 083
    4.1.3 Advantages and disadvantages of fuel cells 084
    4.1.4 Types of fuel cells 087
    4.2 Fuel cell thermodynamics 095
    4.2.1 How a basic fuel cell works 095
    4.2.2 Fuel cell performance 095
    4.2.3 Fuel cell internal energy 097
    4.2.4 First law of thermodynamics 097
    4.2.5 The second law of thermodynamics 098
    4.2.6 What are thermodynamic potential and enthalpy 098
    4.2.7 The calculation of reaction enthalpy 100
    4.2.8 The Gibbs free energy 100
    4.2.9 Factors influencing reversible voltage and calculation 101
    4.2.10 Ideal fuel cell efficiency and actual fuel cell efficiency 103
    4.3 Fuel cell reaction kinetics 104
    4.3.1 Current basic physical quantity calculation 104
    4.3.2 Calculation of reaction rate 105
    4.3.3 Tiffier equation 105
    4.3.4 Responsive charge transfer 106
    4.3.5 Charge transfer can cause voltage loss 107
    4.3.6 The physical significance of conductivity 108
    4.4 Fuel cell systems 108
    4.4.1 General description of fuel cell systems 108
    4.4.2 Fuel cell stack 109
    4.4.3 Fuel transfer processing subsystem 110
    4.4.4 Power transmission subsystem 111
    4.4.5 Fuel cell design levels: the unit cell, the stack, and the system 112
    4.5 Fuel cell based power systems 115
    4.5.1 Hybrid fuel cell power system 115
    4.5.2 Standalone fuel cell power system 116
    4.5.3 Grid connected fuel cell power systems 116
    4.6 Applications of fuel cells 117
    4.6.1 Fuel cell vehicles 117
    4.6.2 Telecommunications 118
    4.6.3 Underwater vehicles 118
    4.6.4 Future targets 118
    4.7 Conclusion 119
    References 119
    Chapter 5 Supercapacitors 123
    5.1 Introduction 123
    5.2 Charge storage mechanism of supercapacitors 124
    5.2.1 Electrochemical double-layer capacitors 124
    5.2.2 Pseudocapacitors 127
    5.2.3 Hybrid capacitor devices 128
    5.3 Electrolytes 129
    5.3.1 Aqueous electrolytes 131
    5.3.2 Organic electrolytes 132
    5.3.3 Ionic-liquid-based electrolytes 135
    5.3.4 Solid- and quasi-solid-state electrolytes 135
    5.4 Electrode materials for EDLCs 137
    5.4.1 Carbon materials with different-scaled pores 137
    5.4.2 Activated carbons (ACs) 138
    5.4.3 Carbon nanotubes (CNTs) 139
    5.4.4 Graphene-based electrode materials 140
    5.4.5 Other carbon structures 142
    5.5 Electrode materials for pseudocapacitors 143
    5.5.1 Noble metal oxides 143
    5.5.2 Transition metal oxides and hydroxides 145
    5.5.3 Conducting polymers (CPs) 146
    5.6 Hybrid capacitors 149
    5.6.1 Acidic HCs 149
    5.6.2 Alkaline HCs 149
    5.6.3 Lithium-ion capacitors 150
    5.6.4 Sodium-ion capacitors 151
    5.7 Supercapacitor performance 153
    5.8 Applications of supercapacitors 154
    References 155
    Chapter 6 Solar cells 159
    6.1 Introduction 159
    6.1.1 History 160
    6.1.2 Classification of solar cells 162
    6.1.3 Some PV parameters 163
    6.1.4 Principles of solar cells 169
    6.2 Silicon-based solar cells 176
    6.2.1 Introduction to Si-based solar cells 176
    6.2.2 Electrode materials 177
    6.2.3 Basic processing and key materials 178
    6.3 GaAs solar cells 181
    6.3.1 History of the GaAs solar cell 181
    6.3.2 Comparison with silicon-based solar cells 182
    6.3.3 Other properties of GaAs materials 182
    6.3.4 Performance of GaAs solar cells 183
    6.4 Dye-sensitized solar cells 183
    6.4.1 History of dye-sensitized solar cells 184
    6.4.2 Principle of operation of a DSSC 185
    6.4.3 Assembly of dye-sensitized solar cells 186
    6.4.4 Main components of DSSCs 187
    6.5 Organic /Polymer solar cells 187
    6.5.1 History of the polymer solar cell 188
    6.5.2 Principles of polymer solar cells 189
    6.5.3 Advantages of polymer solar cells 189
    6.5.4 Structure of a polymer solar cell 190
    6.5.5 Key materials for polymer solar cells 190
    6.5.6 Development of polymer solar cells 191
    6.6 Perovskite solar cells 192
    6.6.1 Perovskite solar cell history 192
    6.6.2 Principles of perovskite solar cells 192
    6.6.3 Key materials for perovskite solar cells 192
    6.7 Solar power in China 193
    References 193
    Chapter 7 Solar-to-Hydrogen 199
    7.1 Hydrogen energy 199
    7.2 Hydrogen production from solar radiation 200
    7.3 Direct solar thermal hydrogen generation 201
    7.4 Concentrated solar thermochemical hydrogen production 203
    7.4.1 Thermodynamics of solar thermochemical processes 203
    7.4.2 Thermochemical processes 205
    7.5 Solar photochemical hydrogen production 209
    7.6 Photocatalytic hydrogen production 210
    7.6.1 Principles of photocatalytic hydrogen generation 210
    7.6.2 Key photocatalytic hydrogen generation processes 211
    7.6.3 Evaluating photocatalytic water splitting systems 211
    7.6.4 UV photocatalysts for water splitting 212
    7.6.5 Visible light photocatalysts for H2 production 214
    7.6.6 Main challenges and opportunities 222
    7.7 Photobiological hydrogen generation 223
    7.7.1 Biological hydrogen production processes 223
    7.7.2 Microbiology 227
    7.7.3 Key enzymes 227
    7.7.4 Genetic modification of microorganisms 228
    7.7.5 Theoretical considerations 228
    7.7.6 Energy analysis and purification of hydrogen 229
    7.8 Solar-hydrogen energy systems 230
    References 231
    Chapter 8 Biomass energy 234
    8.1 Introduction of biomass energy 234
    8.1.1 Definition and features 235
    8.1.2 Main resource categories 235
    8.1.3 Conversion technologies 236
    8.1.4 The risks and rewards of energy from biomass 237
    8.2 Biofuel characteristics 238
    8.3 Bioethanol 239
    8.3.1 Biomass resources 240
    8.3.2 Detailed process technology 242
    8.4 Biodiesel 247
    8.4.1 Synthesis technology 248
    8.4.2 Global biodiesel status 248
    8.5 Gaseous biomass energy production 249
    8.5.1 Biogas 249
    8.5.2 Biomass gasification 251
    8.6 Biomass power generation (BPG) 252
    8.6.1 BPG in China 253
    8.6.2 BPG in other countries 254
    8.7 Outlook 255
    References 256
    Chapter 9 Nuclear energy 260
    9.1 Introduction 260
    9.2 What is nuclear energy 261
    9.3 The physical basis of a nuclear reactor 263
    9.3.1 The nucleus and nuclear energy 264
    9.3.2 Radioactivity 265
    9.3.3 Types and patterns of decay 265
    9.3.4 Nuclear reactions 266
    9.4 Nuclear electric power generation 266
    9.5 Nuclear reactor types and raw materials 269
    9.5.1 Nuclear reactor classification 269
    9.5.2 Pressurized water reactor 270
    9.5.3 Boiling water reactor 270
    9.5.4 Heavy water reactor 271
    9.5.5 Graphite reactor 271
    9.6 Power generation principles 272
    9.6.1 Advantages 274
    9.6.2 Disadvantages 274
    9.7 Nuclear resources 275
    9.7.1 Marine nuclear resources 275
    9.7.2 The nuclear resources of the moon 276
    9.8 Nuclear safety 276
    9.9 Nuclear energy development in China 278
    References 281
    Chapter 10 Other energy 285
    10.1 Introduction 285
    10.2 Wind energy 286
    10.2.1 Development of wind energy 286
    10.2.2 Utilization of wind energy 290
    10.2.3 Wind turbines 292
    10.2.4 The global wind energy situation 294
    10.3 Geothermal energy 297
    10.3.1 History of geothermal energy 298
    10.3.2 Types of geothermal energy 299
    10.3.3 Resources 300
    10.3.4 Application scenarios of geothermal energy 301
    10.3.5 Challenges of geothermal energy 302
    10.4 Marine energy 303
    10.4.1 Characteristics of marine energy 304
    10.4.2 Forms of marine energy 305
    10.4.3 Use patterns for electricity generation 306
    10.4.4 Installed capacity of ocean energy 307
    10.4.5 Challenges of ocean energy 308
    10.4.6 Prospect forecast of ocean energy 309
    10.5 Conclusion 310
    References 310
    Index 313

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购