返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 非线性发射光子玻璃光纤波导器件 姜淳,宋培 著 专业科技 文轩网
  • 新华书店正版
    • 作者: 姜淳,宋培著
    • 出版社: 上海科学技术出版社
    • 出版时间:2020-01-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: 姜淳,宋培著
    • 出版社:上海科学技术出版社
    • 出版时间:2020-01-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2020-01-01
    • 字数:390000
    • 页数:232
    • 开本:16开
    • 装帧:平装
    • ISBN:9787547845615
    • 国别/地区:中国
    • 版权提供:上海科学技术出版社

    非线性发射光子玻璃光纤波导器件

    作  者:姜淳,宋培 著
    定  价:198
    出 版 社:上海科学技术出版社
    出版日期:2020年01月01日
    页  数:232
    装  帧:精装
    ISBN:9787547845615
    主编推荐

    内容简介

    本书系统、全面地总结了国内外在稀土离子多重掺杂光子玻璃中发光离子的相互作用方面的近期新成果,介绍了各类掺杂材料的概念、非线性发光功能效应、研究与开发现状、应用领域、存在的问题及其发展方向。内容包括新型掺杂材料和多稀土共掺杂材料的光谱性质计算、相互作用的理论模型、在光电子器件和光通信系统与网络等中的应用,涉及所有的稀土和过渡金属离子的光谱性质,覆盖面非常广。

    作者简介

    精彩内容

    目录
    Prefave
    1Fundamental Mathematics of Nonlinear Emission Photonic Glass Fiber and Waveguide Devices1
    1.1Introduction1
    1.2Newton Iteration Algorithm for Nonlinear Rate Equation Solution1
    1.2.1Single Variable1
    1.2.2Multi Variable3
    1.3RungeKutta Algorithm for Power Propagation Equation Solution4
    1.3.1Single Function4
    1.3.2Multi Functions6
    1.4Two Point Boundary Problem for Power Propagation Equations in a Laser Cavity7
    1.4.1Principle7
    1.4.2Shooting Method and Relaxation Method7
    References9
    2Fundamental Spectral Theory of Photonic Glasses10
    2.1Introduction10
    2.2JuddOfelt Theory10
    2.3Transition Probability and Quantum Efficiency12
    2.4Fluorescence Branch Ratio13
    2.5Homogeneous and Inhomogeneous Broadening of Spectra14
    References15
    3Spectral Properties of Ytterbium Doped Glasses16
    3.1Introduction16
    3.2Formation Region of Yb2O3Containing Glasses16
    3.3Laser Performance Parameters of Ytterbium Doped Glasses17
    3.3.1Minimum Fraction of Excited State Ions17
    3.3.2Saturation Pump Intensity18
    3.3.3Minimum Pump Intensity18
    3.3.4Storage Energy and Gain Parameters18
    3.4Spectral Properties of Yb3+Doped Borate Glasses19
    3.4.1Compositional Dependence of Spectral Properties19
    3.4.2Dependence of Spectral Properties on Active Ion Concentration22
    3.5Spectral Properties of Yb3+Doped Phosphate Glasses23
    3.5.1Compositional Dependence of Spectral Properties23
    3.5.2Dependence of Spectral Properties on Active Ion Concentration26
    3.6Spectral Properties of Yb3+Doped Silicate Glasses28
    3.6.1Compositional Dependence of Spectral Properties28
    3.6.2Dependence of Spectral Properties on Active Ion Concentration32
    3.7Spectral Properties of Yb3+Doped Germanate Glasses34
    3.8Spectral Properties of Yb3+Doped Telluride Glasses36
    3.8.1Compositional Dependence of Spectral Properties36
    3.8.2Dependence of Spectral Properties on Active Ion Concentration39
    3.9Dependence of Spectral Property and Laser Performance Parameters on Glass System43
    3.9.1Dependence of Spectral Property on Glass Systems43
    3.9.2Dependence of Laser Performance Parameters on Glass Systems46
    3.10Dependence of Energy Level Structure of Yb3+ on Glass Systems51
    3.11Cooperative Upconversion of Yb3+ Ion Pairs53
    3.11.1Cooperative Upconversion Luminescence53
    3.11.2Concentration Quenching Mechanics57
    3.11.3Concentration Dependence of Luminescence Intensity59
    3.12Fluorescence Trap Effect of Yb3+ Ions in Glasses60
    References63
    4Compact Fiber Amplifiers65
    4.1Introduction65
    4.2Level Structure and Numerical Model66
    4.3Dependence of Gain and Noise Figure on Concentrations67
    4.4Doping Concentrations with Short Length High Gain71
    References72
    5Photonic Glass Fiber Lasers74
    5.1Introduction74
    5.2Fundamental Physics of Fiber Laser74
    5.2.1Lasing Conditions of Laser74
    5.2.2Threshold Gain75
    5.2.3Phase Condition and Laser Modes76
    5.2.4Population Inversion Calculation76
    5.3Numerical Models of Rare Earth Doped Fiber Lasers80
    5.3.1Configuration and Power Propagation Equations of Fiber Laser80
    5.3.2Output Power of a Two Level Fiber Laser81
    5.3.3Output Power of a Three Level Fiber Laser83
    5.3.4Output Power of a Four Level Fiber Laser84
    5.3.5Output Power of Yb3+Doped Fiber Laser85
    References90
    6Broadband Fiber Amplifiers and Sources91
    6.1Introduction91
    6.2Pr3+Tm3+Er3+Co Doped Fiber System92
    6.2.1General Rate and Power Propagation Equations with Two Wavelength Pumps92
    6.2.2Gain Characteristics with 980nm Pump96
    6.2.3Gain Characteristics with 793nm Pump99
    6.2.4Gain Characteristics with Double Pumps105
    6.3Gain Characteristics of Pr3+Er3+Co Doped Fiber System131
    6.3.1Rate and Power Propagation Equations131
    6.3.2Dependence of Gain on Fiber Parameters134
    6.4WDM Transmission System Cascaded with Tm3+Er3+Co Doped Fiber Amplifiers139
    6.4.1WDM System with Single Pump140
    6.4.2WDM System with Dual Pumps141
    References143
    7Photonic Glass Waveguide for Spectral Conversion145
    7.1Introduction145
    7.2Theoretical Model and Spectral Characterization 146
    7.2.1Theoretical Model 146
    7.2.2Spectral Characterization 148
    7.3Doubly Doped System 148
    7.3.1Energy Transfer Model 149
    7.3.2Quantum Efficiency of Photonic Glass Waveguide 152
    7.4Triply Doped System 159
    7.4.1Energy Transfer Model 159
    7.4.2Quantum Efficiency of Photonic Glass Waveguide 163
    7.5Performance Evaluation of sc Si Solar Cell with Photonic Glass Waveguides 171
    References174
    8Photonic Glass Waveguide for White Light Generation177
    8.1Introduction 177
    8.2White Light Glasses 178
    8.2.1Tm3+Tb3+Eu3+Co Doped System 178
    8.2.2Yb3+Er3+Tm3+Co Doped System 185
    8.3Emission Tunable Glasses194
    8.3.1Tb3+Sm3+Dy3+Co Doped System 194
    8.3.2Tm3+Yb3+Ho3+Co Doped System 205
    References214
    Appendix 1Matlab Code for Solving Nonlinear Rate and Power Propagation Equation Groups in Co Doped Fiber Amplifiers or Fiber Sources219
    A1.1Nonlinear Rate Equation Group and Coupled Power Propagation Equation Group of a Three Active Ions Co Doped System219
    A1.2Code for Solving Linear Rate Equation Group220
    A1.3Code for Solving Nonlinear Rate Equation Group220
    A1.4Code for Variation of Gain with Fiber Length222
    A1.5Code for Variation of Gain with Active Ion Concentration223
    Appendix 2Matlab Code for Solving Power Propagation Equations of a Laser Cavity with Four Level System225
    Index228

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购