第1章绪论 1.1工程背景与研究意义 1.2实时耦联动力试验技术 1.2.1传统动力试验方法 1.2.2实时耦联动力试验 1.3实时耦联动力试验研究进展 1.3.1试验系统的发展 1.3.2数值积分算法 1.3.3时滞及时滞补偿算法 1.3.4时滞稳定性分析 1.3.5非线性数值子结构的求解 1.3.6试验应用 1.4调谐液柱阻尼器 1.4.1数值与试验研究 1.4.2工程应用 1.5本书的主要工作与创新点 1.5.1本书的主要工作 1.5.2本书的创新点 第2章基于双目标机的RTHS系统构建及验证 2.1引论 2.2清华大学RTHS系统 2.3双目标机RTHS系统构建 2.3.1数值子结构计算的任务分解策略及应用 2.3.2位移外插及内插策略 2.4双目标机RTHS系统的数值验证 2.4.1计算精度 2.4.2计算能力 2.5双目标机RTHS系统的试验验证 2.5.1单层钢架?有限元地基模型 2.5.2试验结果 2.6基于双显式数值积分算法的时滞补偿法 2.6.1双目标机RTHS系统中的反馈力协调性问题 2.6.2补偿算法的提出及特性分析 2.6.3数值算例验证 2.6.4RTHS试验验证 2.7本章小结 第3章多自由度RTHS系统的时滞稳定性分析 3.1引论 3.2基于离散根轨迹法的时滞稳定性分析模型 3.2.1离散根轨迹法 3.2.2多自由度RTHS系统时滞稳定性分析模型 3.3两自由度结构的RTHS系统时滞稳定性分析 3.3.1失稳机理分析 3.3.2参数影响分析 3.3.3考虑不同时滞补偿算法的稳定性分析 3.4时滞稳定性的RTHS验证 3.4.1考虑有限元数值子结构及单源时滞 3.4.2考虑有限元数值子结构及多源时滞 3.5本章小结 第4章不同数值积分算法的时滞稳定性和精度分析 4.1引论 4.2不同数值积分算法在RTHS系统中的特性变化 4.2.1典型数值积分算法简介 4.2.2理论分析 4.3数值算法的时滞稳定性分析 4.3.1纯时滞条件下的时滞稳定性分析 4.3.2考虑时滞补偿的时滞稳定性分析 4.4数值算法的时滞精度分析 4.4.1基于数值模拟的精度分析 4.4.2基于离散根轨迹的精度分析 4.5数值算法时滞稳定性和精度的RTHS验证 4.6本章小结 第5章调谐液柱阻尼器的减震性能研究 5.1引论 5.2TLCD减震机理 5.2.1单自由度结构?TLCD系统动力方程 5.2.2参数影响分析 5.3TLCD减震控制的RTHS验证 5.3.1试验思路 5.3.2试验模型 5.3.3结构?TLCD系统的稳定性分析 5.3.4基于RTHS的TLCD减震试验 5.4基于RTHS的TLCD参数影响分析 5.4.1质量比 5.4.2结构阻尼比 5.4.3结构刚度变化 5.4.4地震加速度峰值 5.5MTLCD用于单自由度钢架的减震控制 5.6本章小结 第6章调谐液柱阻尼器在高层结构减震中的应用试验 6.1引论 6.2多自由度结构?TLCD系统动力方程 6.2.1多自由度结构?STLCD系统 6.2.2多自由度结构?MTLCD系统 6.3足尺TLCD?结构?地基系统的RTHS试验方法 6.4试验模型 6.4.1九层Benchmark钢结构 6.4.2足尺TLCD模型 6.5STLCD控制的RTHS试验 6.5.1STLCD动力特性 6.5.2试验结果及分析 6.6MTLCD控制的RTHS试验 6.6.1MTLCD控制一阶振型响应 6.6.2MTLCD控制多阶振型响应 6.7考虑结构?地基相互作用的RTHS?TLCD试验 6.7.1试验框架 6.7.2考虑有限地基SSI效应 6.7.3考虑半无限地基SSI效应 6.8本章小结 第7章调谐液体阻尼器关键问题研究 7.1引论 7.2基于RTHS的TLD非线性刚度?阻尼模型验证 7.2.1非线性刚度?阻尼模型 7.2.2RTHS试验验证 7.3TLD几何尺寸效应影响研究 7.3.1考虑几何尺寸效应的试验结果 7.3.2考虑质量比尺的试验结果 7.4TLD与TLCD减震效果对比 7.4.1试验模型 7.4.2试验结果 7.5本章小结 第8章结论与展望 8.1主要研究成果和结论 8.2研究展望 参考文献在学期间发表的学术论文与研究成果致谢Contents实时耦联动力试验的大规模数值模拟研究与应用 Contents Chapter 1Introduction 1.1Background and Research Significance 1.2Real?Time Hybrid Simulation Technique 1.2.1Traditional Structural Dynamic Experiments 1.2.2Real?Time Hybrid Similation 1.3Review of Real?Time Hybrid Simulation 1.3.1Development of Experimental System 1.3.2Numerical Algorithms 1.3.3Time Delay and Compensation Methods 1.3.4Delay?Dependent Stability Analysis 1.3.5Nonlinear Numerical Substructure 1.3.6Application 1.4Tuned Liquid Column Damper 1.4.1Numerical and Experimental Study 1.4.2Practical Application 1.5Research Content and Highlight 1.5.1Research Content 1.5.2Highlight Chapter 2Construction and Verification of RTHS System Based on Dual Target Computers 2.1Introduction 2.2RTHS System in Tsinghua University 2.3Construction of RTHS System Based on Dual Target Computers 2.3.1Task Splitting Strategy in Numerical Substructure Analysis 2.3.2Displacement Extrapolation and Interpolation 2.4Numerical Verification 2.4.1Computational Accuracy 2.4.2Computational Capability 2.5Experimentional Verification 2.5.1Single Frame?Finite Element Foundation Model 2.5.2Experimental Results 2.6Time Delay Compensation Method Based on Gui?λ Algorithn 2.6.1Incoordination between the Real and Desired Feedback Forces 2.6.2The Proposed Time Delay Compensation Method and Its Characteristics 2.6.3Numerical Verification 2.6.4RTHS Verification 2.7Summary Chapter 3Delay?Dependent Stability Analysis of MDOF?RTHS System 3.1Introduction 3.2Theoretical Model for Stability Analysis Based on Discrete?Time Root Locus Technique 3.2.1Discrete?Time Root Locus Technique 3.2.2The Construction of Stability Analysis Model for MDOF?RTHS System 3.3Delay?Dependent Stability Analysis of 2 DOFs RTHS System 3.3.1Instability Mechanism Analysis 3.3.2Parameter Impact Analysis 3.3.3Stability Analysis Considering Different Time?Delay Compensation Methods 3.4RTHS Verification 3.4.1Finite Element Numerical Substructure with Single Delay Source 3.4.2Finite Element Numerical Substructure with Multiple Delay Source 3.5SummaryChapter 4Stability and Accuracy Investigation of Different Integration Algorithms 4.1Introduction 4.2Characteristics of Different Integration Algorithms in RTHS System 4.2.1Brief Introduction of Commonly?Used Integration Algorithms 4.2.2Theoretical Analysis 4.3Delay?Dependent Stability Analysis of Integration Algorithms 4.3.1Consideration of Pure Time Delay 4.3.2Consideration of Time Delay Compensation 4.4Delay?Dependent Accuarcy Analysis of Integration Algorithms 4.4.1Accuarcy Analysis Based on Numerical Simulation 4.4.2Accuarcy Analysis Based on Discrete?Time Root Locus Technique 4.5RTHS Verification 4.6Summary Chapter 5Seismic Performance Analysis of Tuned Liquid Column Damper 5.1Introduction 5.2Absorption Principle of TLCD 5.2.1Dynamic Equation of SDOF Structure?TLCD System 5.2.2Parametic Analysis 5.3RTHS Verfication of Control Effect of TLCD 5.3.1Experimental Method 5.3.2Experimental Model 5.3.3Stability Analysis of Structure?TLCD System 5.3.4RTHS of Structure?TLCD System 5.4Parametic Analysis of TLCD Based on RTHS 5.4.1Mass Ratio 5.4.2Structural Damping Ratio 5.4.3Structural Stiffness 5.4.4Peak Ground Acceleration 5.5Application of Applying MTLCD to Control SDOF Frame 5.6Summary Chapter 6Experimental Study of Dynamic Response of High?Rise Structure under TLCD Control 6.1Introduction 6.2Dynamic Equation of MDOF Structure?TLCD System 6.2.1MDOF Structure?STLCD System 6.2.2MDOF Structure?MTLCD System 6.3RTHS Method of Full?Scale TLCD?Structure?Foundation System 6.4Experimental Model 6.4.1Nine?Story Benchmark Steel Structure 6.4.2Full?Scale TLCD Model 6.5RTHS of STLCD 6.5.1Dynamic Characteristic of STLCD 6.5.2Expeimental Results 6.6RTHS of MTLCD 6.6.1Using MTLCD Control the First?Order Modal Response 6.6.2Using MTLCD Control the Multi?Order Modal Response 6.7RTHS?TLCD Considering Soil?Structure Interaction 6.7.1Experimental Framework 6.7.2Considering SSI in Finite Foundation 6.7.3Considering SSI in Semi?Infinite Foundation 6.8Summary Chapter 7Key Issue Study of Tuned Liquid Damper 7.1Introduction 7.2RTHS Verfication of Nonlinear Stiffness?Damping Model for TLD 7.2.1Nonlinear Stiffness?Damping Model 7.2.2RTHS Verification 7.3Investigation of Size Effect of TLD 7.3.1Experiment Considering Size Effect 7.3.2Experiment Considering Mass Ratio Effect 7.4Comparison of Control Effect Between TLD and TLCD 7.4.1Experimental Model 7.4.2Experimental Results 7.5Summary Chapter 8Conclusion and Prospect 8.1The Main Research Result and Conclusion 8.2Prospect