由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
正版 离散数学及其在计算机科学中的应用 英文版 克利福德 斯坦 经典原版书库 9787111580973 机械工业出
¥ ×1
商品基本信息 | |
商品名称: | 离散数学及其在计算机科学中的应用(英文版) |
作者: | 克利福德·斯坦 |
市场价: | 99.00 |
ISBN号: | 9787111580973 |
版次: | 1-1 |
出版日期: | 2017-10 |
页数: | 508 |
字数: | 400 |
出版社: | 机械工业出版社 |
目录 | |
Contents CHAPTER1 Counting 31 1.1 Basic Counting 31 The Sum Principle 31 Abstraction 33 Summing Consecutive Integers 33 The Product Principle 34 Two-Element Subsets 36 Important Concepts, Formulas, and Theorems 37 Problems 38 1.2 Counting Lists, Permutations, and Subsets 40 Using the Sum and Product Principles 40 Lists and Functions 42 The Bijection Principle 44 k-Element Permutations of a Set 45 Counting Subsets of a Set 46 Important Concepts, Formulas, and Theorems 48 Problems 50 1.3 Binomial Coeffiients 52 Pascal’s Triangle 52 A Proof Using the Sum Principle 54 The Binomial Theorem 56 Labeling and Trinomial Coefficient 58 Important Concepts, Formulas, and Theorems 59 Problems 60 1.4 Relations 62 What Is a Relation? 62 Functions as Relations 63 Properties of Relations 63 Equivalence Relations 66 Partial and Total Orders 69 Important Concepts, Formulas, and Theorems 71 Problems 72 1.5 Using Equivalence Relationsin Counting 73 The Symmetry Principle Equivalence Relations 75 The Quotient Principle 76 Equivalence Class Counting 76 Multisets 78 The Bookcase Arrangement Problem 80 The Number of k-Element Multisets of an n-Element Set 81 Usingthe Quotient Principle to Explain a Quotient 82 Important Concepts, Formulas, and Theorems 83 Problems 84 CHAPTER2 Cryptography and Number Theory 89 2.1 Cryptography and Modular Arithmetic 89 Introduction to Cryptography 89 Private-Key Cryptography 90 Public-Key Cryptosystems 93 Arithmetic Modulo n 95 Cryptography Using Addition mod n 98 Cryptography Using Multiplication mod n 99 Important Concepts, Formulas, and Theorems 101 Problems 102 2.2 Inverses and Greatest Common Divisors 105 Solutions to Equations and Inverses mod n 105 Inverses mod n 106 Converting Modular Equations to Normal Equations 109 Greatest Common Divisors 110 Euclid’s Division Theorem 111 Euclid’s GCD Algorithm 114 Extended GCD Algorithm 115 Computing Inverses 118 Important Concepts, Formulas, and Theorems 119 Problems 120 2.3 The RSA Cryptosystem 123 Exponentiation mod n 123 The Rules of Exponents 123 Fermat’s Little Theorem 126 The RSA Cryptosystem 127 The Chinese Remainder Theorem 131 Important Concepts, Formulas, and Theorems 132 Problems 134 2.4 Details of the RSA Cryptosystem 136 Practical Aspects of Exponentiation mod n 136 How Long Does It Take to Use the RSA Algorithm? 139 How Hard Is Factoring? 140 Finding Large Primes 140 Important Concepts, Formulas, and Theorems 143 Problems 144 CHAPTER3 Reflectionon Logic and Proof 147 3.1 Equivalence and Implication 147 Equivalence of Statements 147 Truth Tables 150 DeMorgan’s Laws 153 Implication 155 If and Only If 156 Important Concepts, Formulas, and Theorems 159 Problems 161 3.2 Variables and Quantifier 163 Variables and Universes 163 Quantifier 164 Standard Notation for Quantificatio 166 Statements about Variables 168 Rewriting Statements to Encompass Larger Universes 168 Proving Quantifie Statements Trueor False 169 Negation of Quantifie Statements 170 Implicit Quantificatio 173 Proof of Quantifie Statements 174 Important Concepts, Formulas, and Theorems 175 Problems 177 3.3 Inference 179 Direct Inference (Modus Ponens) and Proofs 179 Rules of Inference for Direct Proofs 181 Contrapositive Ruleof Inference 183 Proof by Contradiction 185 Important Concepts, Formulas, and Theorems 188 Problems 189 CHAPTER4 Induction, Recursion, and Recurrences 191 4.1 Mathematical Induction 191 Smallest Counterexamples 191 The Principle of Mathematical Induction 195 Strong Induction 199 Induction in General 201 A Recursive Viewof Induction 203 Structural Induction 206 Important Concepts, Formulas, and Theorems 208 Problems 210 4.2 Recursion, Recurrences, and Induction 213 Recursion 213 Examples of First-Order Linear Recurrences 215 Iteratinga Recurrence 217 Geometric Series 218 First-Order Linear Recurrences 221 Important Concepts, Formulas, and Theorems 225 Problems 227 4.3 Growth Rates of Solutions to Recurrences 228 Divide and Conquer Algorithms 228 Recursion Trees 231 Three Different Behaviors 239 Important Concepts, Formulas, and Theorems 240 Problems 242 4.4 The Master Theorem 244 Master Theorem 244 Solving More General Kinds of Recurrences 247 Extending the Master Theorem 248 Important Concepts, Formulas, and Theorems 250 Problems 251 4.5 More General Kinds of Recurrences 252 Recurrence Inequalities 252 The Master Theorem for Inequalities 253 A Wrinkle with Induction 255 Further Wrinkles in Induction Proofs 257 Dealing with Functions Other Thannc 260 Important Concepts, Formulas, and Theorems 262 Problems 263 4.6 Recurrences and Selection 265 The Idea of Selection 265 A Recursive Selection Algorithm 266 Selection without Knowing the Median in Advance 267 An Algori |
内容简介 | |
本书专为计算机科学专业的学生而设计,不仅提供学生必需的离散数学知识,而且能够启发后续专业课程的学习兴趣。本书主要内容涵盖计数、密码学与数论、逻辑与证明、归纳法、递归、概率以及图论,推导严谨、代码清晰、练习丰富。本书不仅适合作为高校计算机相关专业离散数学课程的教材,也适合从事计算机行业的技术人员参考。 |
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格