返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • [正版] 精通数据科学 从线性回归到深度学习 数据科学入门到实战教程 基于Python建模神经网络编程人工智能机器学习
  • 正版图书!品质保证!默认发最新版本!收藏店铺可享优先发货!
    • 作者: 唐亘著
    • 出版社: 人民邮电出版社
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    友一个文化制品专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 唐亘著
    • 出版社:人民邮电出版社
    • 开本:16开
    • ISBN:9786584940463
    • 版权提供:人民邮电出版社

            铺公告

      为保障消费者合理购买需求及公平交易机会,避免因非生活消费目的的购买货囤积商品,抬价转售等违法行为发生,店铺有权对异常订单不发货且不进行赔付。异常订单:包括但不限于相同用户ID批量下单,同一用户(指不同用户ID,存在相同/临近/虚构收货地址,或相同联系号码,收件人,同账户付款人等情形的)批量下单(一次性大于5本),以及其他非消费目的的交易订单。

    温馨提示:请务必当着快递员面开箱验货,如发现破损,请立即拍照拒收,如验货有问题请及时联系在线客服处理,(如开箱验货时发现破损,所产生运费由我司承担,一经签收即为货物完好,如果您未开箱验货,一切损失就需要由买家承担,所以请买家一定要仔细验货)。

      关于退货运费:对于下单后且物流已发货货品在途的状态下,原则上均不接受退货申请,如顾客原因退货需要承担来回运费,如因产品质量问题(非破损问题)可在签收后,联系在线客服。

     

     

     
    AI数据科学
    大促价:
    198.00
    价格
    267.00
    折扣
    7.42折
    节省
    ¥69.0
    活动倒计时: 06 23 : 58 :


    商品参数

    精通数据科学 从线性回归到深度学习
                定价 99.00
    出版社 人民邮电出版社
    版次 1
    出版时间 2018年06月
    开本 16
    作者 唐亘
    装帧 平装
    页数 432
    字数
    ISBN编码 9787115479105

    内容介绍

    本书全面讲解了数据科学的相关知识,从统计分析学到机器学习、深度学习中用到的算法及模型,借鉴经济学视角给出模型的相关解释,深入探讨模型的可用性,并结合大量的实际案例和代码帮助读者学以致用,将具体的应用场景和现有的模型相结合,从而更好地发现模型的潜在应用场景。本书可作为数据科学家和数据工程师的学习用书,也适合对数据科学有强烈兴趣的初学者使用,同时也可作为高等院校计算机、数学及相关专业的师生用书和培训学校的教材。


    目录

    D 1章  数据科学概述 1

    1.1 挑战 2

    1.1.1 工程实现的挑战 2

    1.1.2 模型搭建的挑战 3

    1.2 机器学习 5

    1.2.1 机器学习与传统编程 5

    1.2.2 监督式学习和非监督式学习 8

    1.3 统计模型 8

    1.4 关于本书 10

    D 2章 Python安装指南与简介:告别空谈 12

    2.1 Python简介 13

    2.1.1 什么是Python 15

    2.1.2 Python在数据科学中的地位 16

    2.1.3 不可能绕过的D三方库 17

    2.2 Python安装 17

    2.2.1 Windows下的安装 18

    2.2.2 Mac下的安装 21

    2.2.3 Linux下的安装 24

    2.3 Python上手实践 26

    2.3.1 Python shell 26

    2.3.2 DI一个Python程序:Word Count 28

    2.3.3 Python编程基础 30

    2.3.4 Python的工程结构 34

    2.4 本章小结 35

    D3章 数学基础:恼人但又不可或缺的知识 36

    3.1 矩阵和向量空间 37

    3.1.1 标量、向量与矩阵 37

    3.1.2 特殊矩阵 39

    3.1.3 矩阵运算 39

    3.1.4 代码实现 42

    3.1.5 向量空间 44

    3.2 概率:量化随机 46

    3.2.1 定义概率:事件和概率空间 47

    3.2.2 条件概率:信息的价值 48

    3.2.3 随机变量:两种不同的随机 50

    3.2.4 正态分布:殊途同归 52

    3.2.5 P-value:自信的猜测 53

    3.3 微积分 55

    3.3.1 导数和积分:位置、速度 55

    3.3.2 J限:变化的终点 57

    3.3.3 复合函数:链式法则 58

    3.3.4 多元函数:偏导数 59

    3.3.5 J值与Z值:Z优选择 59

    3.4 本章小结 61

    D4章 线性回归:模型之母 62

    4.1 一个简单的例子 64

    4.1.1 从机器学习的角度看这个问题 66

    4.1.2 从统计学的角度看这个问题 69

    4.2 上手实践:模型实现 73

    4.2.1 机器学习代码实现 74

    4.2.2 统计方法代码实现 77

    4.3 模型陷阱 82

    4.3.1 过度拟合:模型越复杂越好吗 84

    4.3.2 模型幻觉之统计学方案:假设检验 87

    4.3.3 模型幻觉之机器学习方案:惩罚项 89

    4.3.4 比较两种方案 92

    4.4 模型持久化 92

    4.4.1 模型的生命周期 93

    4.4.2 保存模型 93

    4.5 本章小结 96

    D5章 逻辑回归:隐藏因子 97

    5.1 二元分类问题:是与否 98

    5.1.1 线性回归:为何失效 98

    5.1.2 窗口效应:看不见的才是关键 100

    5.1.3 逻辑分布:胜者生存 102

    5.1.4 参数估计之似然函数:统计学角度 104

    5.1.5 参数估计之损失函数:机器学习角度 104

    5.1.6 参数估计之Z终预测:从概率到选择 106

    5.1.7 空间变换:非线性到线性 106

    5.2 上手实践:模型实现 108

    5.2.1 初步分析数据:直观印象 108

    5.2.2 搭建模型 113

    5.2.3 理解模型结果 116

    5.3 评估模型效果:孰优孰劣 118

    5.3.1 查准率与查全率 119

    5.3.2 ROC曲线与AUC 123

    5.4 多元分类问题:CY是与否 127

    5.4.1 多元逻辑回归:逻辑分布的威力 128

    5.4.2 One-vs.-all:从二元到多元 129

    5.4.3 模型实现 130

    5.5 非均衡数据集 132

    5.5.1 准确度悖论 132

    5.5.2 一个例子 133

    5.5.3 解决方法 135

    5.6 本章小结 136

    D6章 工程实现:计算机是怎么算的 138

    6.1 算法思路:模拟滚动 139

    6.2 数值求解:梯度下降法 141

    6.3 上手实践:代码实现 142

    6.3.1 TensorFlow基础 143

    6.3.2 定义模型 148

    6.3.3 梯度下降 149

    6.3.4 分析运行细节 150

    6.4 更优化的算法:随机梯度下降法 153

    6.4.1 算法细节 153

    6.4.2 代码实现 154

    6.4.3 两种算法比较 156

    6.5 本章小结 158

    D7章 计量经济学的启示:他山之石 159

    7.1 定量与定性:变量的数学运算合理吗 161

    7.2 定性变量的处理 162

    7.2.1 虚拟变量 162

    7.2.2 上手实践:代码实现 164

    7.2.3 从定性变量到定量变量 168

    7.3 定量变量的处理 170

    7.3.1 定量变量转换为定性变量 171

    7.3.2 上手实践:代码实现 171

    7.3.3 基于卡方检验的方法 173

    7.4 显著性 175

    7.5 多重共线性:多变量的烦恼 176

    7.5.1 多重共线性效应 176

    7.5.2 检测多重共线性 180

    7.5.3 解决方法 185

    7.5.4 虚拟变量陷阱 188

    7.6 内生性:变化来自何处 191

    7.6.1 来源 192

    7.6.2 内生性效应 193

    7.6.3 工具变量 195

    7.6.4 逻辑回归的内生性 198

    7.6.5 模型的联结 200

    7.7 本章小结 201

    D8章 监督式学习: 目标明确 202

    8.1 支持向量学习机 203

    8.1.1 直观例子 204

    8.1.2 用数学理解直观 205

    8.1.3 从几何直观到Z优化问题 207

    8.1.4 损失项 209

    8.1.5 损失函数与惩罚项 210

    8.1.6 Hard margin 与soft margin比较 211

    8.1.7 支持向量学习机与逻辑回归:隐藏的假设 213

    8.2 核函数 216

    8.2.1 空间变换:从非线性到线性 216

    8.2.2 拉格朗日对偶 218

    8.2.3 支持向量 220

    8.2.4 核函数的定义:优化运算 221

    8.2.5 常用的核函数 222

    8.2.6 Scale variant 225

    8.3 决策树 227

    8.3.1 决策规则 227

    8.3.2 评判标准 229

    8.3.3 代码实现 231

    8.3.4 决策树预测算法以及模型的联结 231

    8.3.5 剪枝 235

    8.4 树的集成 238

    8.4.1 随机森林 238

    8.4.2 Random forest embedding 239

    8.4.3 GBTs之梯度提升 241

    8.4.4 GBTs之算法细节 242

    8.5 本章小结 244

    D9章 生成式模型:量化信息的价值 246

    9.1 贝叶斯框架 248

    9.1.1 蒙提霍尔问题 248

    9.1.2 条件概率 249

    9.1.3 先验概率与后验概率 251

    9.1.4 参数估计与预测公式 251

    9.1.5 贝叶斯学派与频率学派 252

    9.2 朴素贝叶斯 254

    9.2.1 特征提取:文字到数字 254

    9.2.2 伯努利模型 256

    9.2.3 多项式模型 258

    9.2.4 TF-IDF 259

    9.2.5 文本分类的代码实现 260

    9.2.6 模型的联结 265

    9.3 判别分析 266

    9.3.1 线性判别分析 267

    9.3.2 线性判别分析与逻辑回归比较 269

    9.3.3 数据降维 270

    9.3.4 代码实现 273

    9.3.5 二次判别分析 275

    9.4 隐马尔可夫模型 276

    9.4.1 一个简单的例子 276

    9.4.2 马尔可夫链 278

    9.4.3 模型架构 279

    9.4.4 中文分词:监督式学习 280

    9.4.5 中文分词之代码实现 282

    9.4.6 股票市场:非监督式学习 284

    9.4.7 股票市场之代码实现 286

    9.5 本章小结 289

    D 10章 非监督式学习:聚类与降维 290

    10.1 K-means 292

    10.1.1 模型原理 292

    10.1.2 收敛过程 293

    10.1.3 如何选择聚类个数 295

    10.1.4 应用示例 297

    10.2 其他聚类模型 298

    10.2.1 混合高斯之模型原理 299

    10.2.2 混合高斯之模型实现 300

    10.2.3 谱聚类之聚类结果 303

    10.2.4 谱聚类之模型原理 304

    10.2.5 谱聚类之图片分割 307

    10.3 Pipeline 308

    10.4 主成分分析 309

    10.4.1 模型原理 310

    10.4.2 模型实现 312

    10.4.3 核函数 313

    10.4.4 Kernel PCA的数学原理 315

    10.4.5 应用示例 316

    10.5 奇异值分解 317

    10.5.1 定义 317

    10.5.2 截断奇异值分解 317

    10.5.3 潜在语义分析 318

    10.5.4 大型推荐系统 320

    10.6 本章小结 323

    D 11章 分布式机器学习:集体力量 325

    11.1 Spark简介 327

    11.1.1 Spark安装 328

    11.1.2 从MapReduce到Spark 333

    11.1.3 运行Spark 335

    11.1.4 Spark DataFrame 336

    11.1.5 Spark的运行架构 339

    11.2 Z优化问题的分布式解法 341

    11.2.1 分布式机器学习的原理 341

    11.2.2 一个简单的例子 342

    11.3 大数据模型的两个维度 344

    11.3.1 数据量维度 344

    11.3.2 模型数量维度 346

    11.4 开源工具的另一面 348

    11.4.1 一个简单的例子 349

    11.4.2 开源工具的阿喀琉斯之踵 351

    11.5 本章小结 351

    D 12章 神经网络:模拟人的大脑 353

    12.1 神经元 355

    12.1.1 神经元模型 355

    12.1.2 Sigmoid神经元与二元逻辑回归 356

    12.1.3 Softmax函数与多元逻辑回归 358

    12.2 神经网络 360

    12.2.1 图形表示 360

    12.2.2 数学基础 361

    12.2.3 分类例子 363

    12.2.4 代码实现 365

    12.2.5 模型的联结 369

    12.3 反向传播算法 370

    12.3.1 随机梯度下降法回顾 370

    12.3.2 数学推导 371

    12.3.3 算法步骤 373

    12.4 提高神经网络的学习效率 373

    12.4.1 学习的原理 373

    12.4.2 激活函数的改进 375

    12.4.3 参数初始化 378

    12.4.4 不稳定的梯度 380

    12.5 本章小结 381

    D 13章 深度学习:继续探索 383

    13.1 利用神经网络识别数字 384

    13.1.1 搭建模型 384

    13.1.2 防止过拟合之惩罚项 386

    13.1.3 防止过拟合之dropout 387

    13.1.4 代码实现 389

    13.2 卷积神经网络 394

    13.2.1 模型结构之卷积层 395

    13.2.2 模型结构之池化层 397

    13.2.3 模型结构之完整结构 399

    13.2.4 代码实现 400

    13.2.5 结构真的那么重要吗 405

    13.3 其他深度学习模型 406

    13.3.1 递归神经网络 406

    13.3.2 长短期记忆 407

    13.3.3 非监督式学习 409

    13.4 本章小结 411


    关联推荐

    1.在数据学科的角度,融合了数学、计算机科学、计量经济学的精髓。

    2.为读者阐释了数据科学所要解决的核心问题—数据模型、算法模型的理论内涵和适用范围

    3.以常用的IT工具—Python为基础,教会读者如何建模以及通过算法实现数据模型,具有很强的实操性。

    4.本书还为读者详解了分布式机器学习、神经网络、深度学习等大数据和人工智能的前沿技术。

    中国工程院院士、D三SJ科学院院士、前中国科学院计算技术研究所所长李国杰,

    易选股金融智能证券董事长,键桥通讯董事易欢欢作序推荐;

    GrowingIO 创始人兼 CEO张溪梦,

    复旦大学教授、博士生导师、复旦大学航空航天数据研究中心主任杨卫东,

    美国罗格斯大学管理科学及信息系统系终身教授,中国计算机学会大数据专家WY会WY林晓东,诚意推荐。

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购