返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • [醉染正版]携程人工智能实践携程技术团队 旅游地图书籍
  • 本店商品限购一件,多拍不予发货,感谢理解!
    • 作者: 携程技术团队著
    • 出版社: 电子工业出版社
    • 出版时间:2020-04
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    醉染图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 携程技术团队著
    • 出版社:电子工业出版社
    • 出版时间:2020-04
    • ISBN:9787096485556
    • 版权提供:电子工业出版社

                   店铺公告

     

    为保障消费者合理购买需求及公平交易机会,避免因非生活消费目的的购买货囤积商品,抬价转售等违法行为发生,店铺有权对异常订单不发货且不进行赔付。异常订单:包括但不限于相同用户ID批量下单,同一用户(指不同用户ID,存在相同/临近/虚构收货地址,或相同联系号码,收件人,同账户付款人等情形的)批量下单(一次性大于5本),以及其他非消费目的的交易订单。

    温馨提示:请务必当着快递员面开箱验货,如发现破损,请立即拍照拒收,如验货有问题请及时联系在线客服处理,(如开箱验货时发现破损,所产生运费由我司承担,一经签收即为货物完好,如果您未开箱验货,一切损失就需要由买家承担,所以请买家一定要仔细验货),

    关于退货运费:对于下单后且物流已发货货品在途的状态下,原则上均不接受退货申请,如顾客原因退货需要承担来回运费,如因产品质量问题(非破损问题)可在签收后,联系在线客服。

    基本信息
     
    书名:   携程人工智能实践
    作者:   携程技术团队
    出版社:   电子工业出版社
    出版日期:   2019-08-01
    版次:   1
    ISBN:   9787121384400
    市场价:   109.0
    目录
     

    目 录

    第1 章 数学基础 001

    1.1 引言 001

    1.2 线代数 001

    1.2.1 概述 001

    1.2.2 向量与矩阵 002

    1.2.3 矩阵的运算 003

    1.2.4 几种特殊的矩阵 005

    1.2.5 线方程组与矩阵的逆 007

    1.2.6 特征值和特征向量 010

    1.2.7 张量的定义和运算 011

    1.3 概率基础 013

    1.3.1 频率与概率 013

    1.3.2 熵 016

    1.3.3 常见的概率分布 017

    1.4 优化理论 020

    1.4.1 优化理论简介 020

    1.4.2 无约束的优化问题 022

    1.4.3 无约束的优化方法 024

    1.4.4 风险函数的优化方法 026

    1.4.5 带约束的优化方法 028

    1.5 本章小结 031

    参考文献 031


    第2 章 模型构建 032

    2.1 引言 032

    2.2 建模流程 032

    2.2.1 目标定义 032

    2.2.2 损失函数 035

    2.2.3 求解优化 037

    2.2.4 结果评估 037

    2.2.5 模型选择 040

    2.3 常见模型 042

    2.3.1 模型的分类方法 042

    2.3.2 回归模型 043

    2.3.3 逻辑回归模型 047

    2.4 集成学习 049

    2.4.1 集成学习概述 049

    2.4.2 Bagging 051

    2.4.3 Boosting 052

    2.5 本章小结 055

    参考文献 057


    第3 章 个化与搜索 058

    3.1 个化概述 058

    3.2 跨领域改善用户冷启动问题 059

    3.2.1 背景描述 059

    3.2.2 基础定义 060

    3.2.3 建模思路 061

    3.2.4 模型结构 062

    3.2.5 实验结果 065

    3.3 Bandit 算法在携程场景中的应用实践 066

    3.3.1 Context-free Bandit 算法 067

    3.3.2 Contextual Bandit 算法 069

    3.3.3 场景应用 070

    3.4 旅游度假产品的搜索个化排序 078

    3.4.1 度假搜索排序框架 079

    3.4.2 度假搜索排序算法 080

    3.4.3 模型演进及其他 085

    3.4.4 小结 086

    3.5 深度学习在酒店房型中的应用实践 087

    3.5.1 酒店房型业务的背景 087

    3.5.2 业务问题转化为算法问题 087

    3.5.3 算法流程 088

    3.5.4 小结 089

    3.6 强化学习在酒店排序中的应用实践 089

    3.6.1 业务背景 089

    3.6.2 传统排序学局限 090

    3.6.3 强化学基本思路 091

    3.6.4 算法流程 091

    3.6.5 小结 093

    3.7 瀑布流排序算法实践 094

    3.7.1 场景简介 094

    3.7.2 优化目标 094

    3.7.3 特征工程 095

    3.7.4 模型 097

    3.7.5 位置偏差 098

    3.7.6 评价指标 099

    3.7.7 场景实践 101

    3.8 本章小结 101


    第4 章 AI 服务化 102

    4.1 AI 服务化的背景与难点 102

    4.2 旅游领域知识图谱 102

    4.2.1 旅游领域知识图谱的特点 103

    4.2.2 旅游领域知识图谱的构建 104

    4.2.3 旅游领域知识图谱的应用 112

    4.3 QA 问答中的文本匹配与排序 117

    4.3.1 基于深度学语义匹配模型 118

    4.3.2 基于交互的语义匹配模型 122

    4.3.3 迁移学习在语义匹配网络中的应用 125

    4.3.4 对语义匹配模型的一些思考 127

    4.4 携程化中的机器翻译 130

    4.4.1 模型架构 130

    4.4.2 建模技巧 135

    4.4.3 翻译质量评估 138

    4.5 证件全文本识别 141

    4.5.1 文本识别简介与发展历程 141

    4.5.2 文本识别步骤 142

    4.5.3 文本检测 142

    4.5.4 文本识别 145

    4.5.5 文本识别在证件识别中的应用实践 145

    4.6 本章小结 147

    参考文献 147


    第5 章 AI 助力产品运营 150

    5.1 旅游场景中的主题图片自动 151

    5.1.1 业务场景 151

    5.1.2 图像识别 151

    5.1.3 图像去重 154

    5.1.4 图像优美度识别 155

    5.1.5 小结 158

    5.2 知识推理在携程业务中的应用 158

    5.2.1 标签系统的业务背景和业务痛点 159

    5.2.2 标签规则配置平台的设计与实现 160

    5.2.3 小结 164

    5.3 基于专名的内容产品化 165

    5.3.1 内容产品化的业务背景 165

    5.3.2 命名实体识别 165

    5.3.3 实体链接 168

    5.3.4 小结 174

    5.4 主题理由抽取 174

    5.4.1 主题理由抽取的业务背景 174

    5.4.2 智能内容抽取 175

    5.4.3 自动内容生成 186

    5.4.4 小结 193

    5.5 本章小结 194

    参考文献 194


    第6 章 AI 运营 199

    6.1 问题的背景与难点 199

    6.2 机器学习在海外酒店房态预测中的运用 201

    6.2.1 业务背景 201

    6.2.2 海外酒店房态预测的难点 201

    6.2.3 海外酒店房态预测难点的解决方案 202

    6.2.4 海外酒店房态预测的应用场景 208

    6.3 IM+ 用户模拟评分 209

    6.3.1 业务背景 209

    6.3.2 基于深度学模拟评分 210

    6.3.3 技术方案流程 214

    6.4 海外邮件自动化 215

    6.4.1 业务背景 215

    6.4.2 自然语言处理在邮件自动化中的应用 216

    6.5 实时智能异常检测平台的算法及工程实现 221

    6.5.1 应用场景 221

    6.5.2 大而全的监控衍生出的问题 222

    6.5.3 统计模型的困扰 222

    6.5.4 算法选择和设计目标 223

    6.5.5 算法的描述和检验 225

    6.5.6 实时工程 231

    6.6 本章小结 233


    第7 章 信息 234

    7.1 问题的背景与难点 235

    7.2 机器学习在Web 攻击检测中的实践 235

    7.2.1 携程Web-IDS 攻击检测系统架构介绍 235

    7.2.2 定义目标问题 238

    7.2.3 收集数据和实现特征工程 238

    7.2.4 模型效果评估 240

    7.2.5 线上应用和持续优化 241

    7.3 机器学习在滑块验证码防御中的实践 242

    7.3.1 滑块验证码人机识别 243

    7.3.2 滑块验证码轨迹相似度识别 247

    7.4 本章小结 253

    参考文献 253


    第8 章 风险控制 254

    8.1 自动化迭代反欺诈模型体系 254

    8.1.1 风控变量体系 256

    8.1.2 自动化迭代模型框架 256

    8.1.3 RNN 表征学习 259

    8.1.4 自动化与传统方法的效果对比 261

    8.2 “程信分”模型体系 263

    8.2.1 “程信分”模型 263

    8.2.2 “闪住”催收模型 266

    8.3 在业务风控场景中的应用 268

    8.3.1 酒店反模型 268

    8.3.2 机票防虚占模型 271

    8.4 本章小结 273

    参考文献 273


    第9 章 AI 挖掘中台 274

    9.1 AI 挖掘中台的背景 274

    9.2 AI 挖掘中台的框架能 275

    9.2.1 AI 挖掘中台的构成 275

    9.2.2 AI 挖掘操作步骤 276

    9.2.3 AI 挖掘中台的组件及工作流程 279

    9.2.4 AI 挖掘中台应用成效 281

    9.3 大数据和人工智能的赋能 281

    9.4 本章小结 282


    第10 章 AI 运营中台 283

    10.1 AI 运营中台的背景 283

    10.2 AI 运营中台的框架能 284

    10.2.1 框架 284

    10.2.2 流程 288

    10.2.3 模块 289

    10.3 AI 运营中台的运营 290

    10.3.1 AI 赋能方式 290

    10.3.2 企业应用实例 291

    10.4 本章小结 292


    第11 章 通用数据服务 294

    11.1 通用数据服务的背景 294

    11.2 通用数据服务平台的架构能 295

    11.2.1 通用数据服务平台的架构 295

    11.2.2 通用数据服务平台能模块 295

    11.3 通用数据服务的监控 299

    11.3.1 存储监控 300

    11.3.2 查询监控 300

    11.3.3 写入监控 301

    11.4 本章小结 302

    内容介绍
     

    《携程人工智能实践》的作者来自携程多个研发部门,从具体的应用场景入手,主括旅行产品的个化和搜索,旅行场景的 OCR、机器翻译和知识图谱,主题图片、理由抽取,以及风险控制和如何工程化提升研发效率等,较为地介绍了如何对具体的业务问题进行建模,将其转变为具体的机器学习模型,并将业务目标转化为机器学目标函数。本书在此基础上提供了一些有效的经验,使得读者能够利用机器学地帮助企业提升业务目标、提升人效比,乃为的保驾护航。作者希望本书能够帮助产品技术更好地理解机器学落地,给读者带来启发和借鉴。



    在线试读
     
    媒体评论
     

    《携程人工智能实践》分享了人工智能技术在携程具体业务场景中的落地,选取的都是真实技术案例,相信对相关领域的同学会有所帮助。我们也相信人工智能技术会对旅行等服务领域带来巨大改变,希望更多人参与到人工智能的实际研发中来。

    ——携程集团执行裁、技术负责人 张晨



    人工智能作为一门理论与实践并重的学科,要求研究人员在理解相关理论的同时,还要了解如何在实际业务中应用人工智能技术。本书结合携程的具体业务场景,展现了人工智能技术的落地方案,从旅行产品的个化和搜索,到旅行场景的OCR、机器翻译和知识图谱,再到产品层面的主题图片、理由抽取等,有理论、有方法,还有经验分享,适合对人工智能感兴趣的和从业者学习。

    ——北京大学计算机系副主任、长江学者特聘教授 崔斌



    智能时代已经来临,携程结合自身具体业务场景,倾情奉献了人工智能实践。本书不括个化、搜索、旅游知识图谱、QA 问答、机器翻译和证件 OCR 的AI 服务, 而括AI 赋能运营、智能信息与风控,以及挖掘平台和运营平台等AI 中台化内容。本书将理论与实践相结合,在涵盖人工智能原理与算法的基础上,提供了大量应用落地案例和相关思考。在人们越来越重视生活质量和旅游体验的背景下,本书带领读者了解在线旅游行业的AI 场景及解决方案,是一本的好书。

    ——同济大学百人计划特聘研究员,OpenKG 创始人昊奋



    对于深度学习而言,要的是与应用场景结合,从而产生商业价值。本书从数学基础、模型构建、场景实践及工程化等方面对深度学习进行了的介绍,并围绕OTA 行业运营的应用实践和案例,详细讲解了神经网络模型在和搜索、运营提效、风控等业务领域的具体实施,同时详细介绍了平台化、服务化在深度学习应用中的重要意义和具体实践。本书案例实、深入浅出,是携程技术团队多年实践经验的结晶,适合行业实践者阅读参考。

    ——滴滴出行数据科学家 谢梁



    AI 是互联网未来技术的下一站,今天我们欣喜地看见,携程AI 中台化的努力与成果,把技术人对未来的梦想在OTA 行业变成了落地的现实,真实地服务于数亿公众的出行,为AI 的产业化树立了新标杆。

    ——蚂蚁金服算监 于磊



    本书的突出特点是理论与实际业务紧密结合,介绍了人工智能的核心概念、技术原理,结合携程具体业务展现了技术的落地实践。本书内容,案例充分,实用强,人工智能从业者和对人工智能应用感兴趣的都能从中获益。

    ——微众银行席人工智能官,香港科技大学讲座教授 杨强



    本书详细介绍了携程在人工智能技术落地方面的深入探索,分享了如何从实际应用场景入手,把业务和产品的目标转化为人工智能模型和算法问题。并综合考虑系统、环境和数据的多种约束,设计和实施具体落地方案,同时对人工智能服务化和人工智能运营的理念和技术进行了很好的分析结,是携程技术团队多年开发和应用人工智能实践经验的结晶。本书对互联网行业和人工智能应用研究机构的科研技术人员来说,是一本很好的案头参考书。

    ——美国微软人工智能与研究院研监,《深度学习模型及应用详解》作者 张若非





    适读人群 :人工智能领域的从业人员; 人工智能行业的产品和技术; 想要入门算法的

    《携程人工智能实践》详细介绍了携程在人工智能技术落地方面的深入探索,分享了如何从实际应用场景入手,把业务和产品的目标转化为人工智能模型和算法问题。并综合考虑系统、环境和数据的多种约束,设计和实施具体落地方案,同时对人工智能服务化和人工智能运营的理念和技术进行了很好的分析结,是携程技术团队多年开发和应用人工智能实践经验的结晶。本书对互联网行业和人工智能应用研究机构的科研技术人员来说,是一本很好的案头参考书。

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购