返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 全新正版不等式(英文版)9787519250355世界图书出版公司
    • 作者: (英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉著 | (英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉编 | (英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉译 | (英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉绘
    • 出版社: 世界图书出版公司
    • 出版时间:2018-09-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    如梦图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    新春将至,本公司假期时间为:2025年1月23日至2025年2月7日。2月8日订单陆续发货,期间带来不便,敬请谅解!

    商品参数
    • 作者: (英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉著| (英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉编| (英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉译| (英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉绘
    • 出版社:世界图书出版公司
    • 出版时间:2018-09-01
    • 版次:1
    • 印次:3
    • 印刷时间:2020-05-01
    • 字数:270千字
    • 页数:324
    • 开本:24开
    • ISBN:9787519250355
    • 版权提供:世界图书出版公司
    • 作者:(英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉
    • 著:(英)G.H.哈代//J.J.E.利特尔伍德//G.波利亚|责编:刘慧//高蓉
    • 装帧:暂无
    • 印次:3
    • 定价:69.00
    • ISBN:9787519250355
    • 出版社:世界图书出版公司
    • 开本:24开
    • 印刷时间:2020-05-01
    • 语种:英语
    • 出版时间:2018-09-01
    • 页数:324
    • 外部编号:30934972
    • 版次:1
    • 成品尺寸:暂无

    CHAPTER Ⅰ.INTRODUCTION
    1.1. Finite, infinite, and integral inequalities
    1.2. Notations
    1.3. Positive inequalities
    1.4. Homogeneous inequalities
    1.5. The axiomatic basis of algebraic inequalities
    1.6. Comparable functions
    1.7. Selection of proofs
    1.8. Selection of subjects
    CHAPTER Ⅱ.ELEMENTARY MEAN VALUES
    2.1. Ordinary means
    2.2. Weighted means
    .. Limiting cases of Μr(a)
    2.4. Cauchy's inequality
    2.5. The theorem of the arithmetic and geometric means
    2.6. Other proofs of the theorem of the means
    2.7. Holder's inequality and its extensions
    2.8. Holder's inequality and its extensiong (cont.)
    2.9. General properties of the means Μr(a)
    2.10. The sums □(无此符号), (a)
    2.11. Minkowski's inequality
    2.12. A companion to Minkowski's inequality
    2.13. Illustrations an ppictons of the fundamental inequalities
    2.14. Inductive proofs of the fundamental inequalities
    2.15. Elementary inequalities connected withTheorem 37
    2.16. Elementary proof of Theorem 3
    2.17. Tchebychef's inequality
    2.18. Muirhead's theorem
    2.19. Proof of Muirhead's theorem
    2.20. An alternative theorem
    2.21. Further theorems on aymmetrical means
    2.22. The elementary symmetric funotions of n positive numbers
    2.. A note on definite forms
    2.24. A theorem concerning strictly positive forms Miscellaneous theorems and examples
    CHAPTER Ⅲ.MEAN VALUES WITH AN ARBITRARY FUNCTION AND THE THEORY OF CONVEX FUNCTIONS
    3.1. Definitions
    3.2. Equivalent meang
    8.3. A characteristic property of the means Μr
    3.4. Comparability
    3.5. Convex functions
    3.6. Continuous convex functions
    3.7. An alternative definition
    3.8. Equality in the fundamental inequalities
    3.9. Restatements and extensions of Theorem 85
    3.10. Twice differentiable convex functions
    3.11. Applications of the properties of twice differentiable convex functions
    3.12. Convex functions of several variables
    3.13. Generalisations of Hlder's inequality
    3.14. Some theorems concerning monotonic functions
    3.15. Sums with an arbitrary function: generalisations of Jensen's inequality
    3.16. Generalisations of Minkowski's inequality
    3.17. Comparison of sets
    3.18. Further general properties of convex functions
    3.19. Further properties of continuous convex functions
    3.20. Discontinuous convex functions
    Miscellaneous theorems and examples
    CHAPTER Ⅳ.VARIOUS APPLICATIONS OF THE CALCULUS
    4.1. Introduotion
    4.2. Applications of the mean value theorem
    4.3. Further applications of elementary differential caloulus
    4.4. Maxima and minima of functions of one variable
    4.5. Use of Taylor's series
    4.6. Applications of the theory of maxima and minima of functions of several variables
    4.7. Comparison of series and integrals
    4.8. An inequality of W.H.Young
    CHAPTER Ⅴ.INFINITE SERIES
    5.1. Introduction
    5.2. The means Μr
    5.3. The generalisation of Theorems 3 and 9
    5.4. Holder's inequality and its extensions
    5.5. The means Μr(cont.)
    5.6. The sums □(无此符号)
    5.7. Minkowski's inequality
    5.8. Tchebychef's inequality
    5.9. A summary
    Miscellaneous theorems and examples
    CHAPTER Ⅵ.INTEGRALS
    6.1. Preliminary remarks on Lebesgue integrals
    6.2. Remarks on null sets and null functions
    6.3. Further remarks concerning integration
    6.4. Remarks on methods of proof
    6.5. Further remarks on method: the inequality of Schwarz
    6.6. Definition of the means Μr(f)when r≠0
    6.7. The geometric mean of a function
    8.8. Further properties of the geometric mean
    6.9. Holder's inequality for integrals
    6.10. General properties of the means Μr(f)
    6.11. General properties of the means Μr(f) (cont.)
    6.12. Convexity o o Μrr
    6.13. Minkowski's inequality for integrals
    6.14. Mean values depending on an arbitrary function
    6.15. The

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购