返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 全新正版拓扑绝缘体(英文版)9787519219543世界图书出版公司
    • 作者: 沈顺清著 | 沈顺清编 | 沈顺清译 | 沈顺清绘
    • 出版社: 世界图书出版公司
    • 出版时间:2017-01-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    如梦图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品参数
    • 作者: 沈顺清著| 沈顺清编| 沈顺清译| 沈顺清绘
    • 出版社:世界图书出版公司
    • 出版时间:2017-01-01
    • 版次:1
    • 印次:1
    • 印刷时间:2017-01-01
    • 开本:24开
    • ISBN:9787519219543
    • 版权提供:世界图书出版公司
    • 作者:沈顺清
    • 著:沈顺清
    • 装帧:暂无
    • 印次:1
    • 定价:58.00
    • ISBN:9787519219543
    • 出版社:世界图书出版公司
    • 开本:24开
    • 印刷时间:2017-01-01
    • 语种:暂无
    • 出版时间:2017-01-01
    • 页数:暂无
    • 外部编号:3753291
    • 版次:1
    • 成品尺寸:暂无

    1 Introduction
    1.1 From the Hall Effect to ntum Spin Hall Effect
    1.2 Topological Insulators as Generalization of ntum Spin Hall Effect
    1.3 Topological Phases in Superconductors and Superfluids
    1.4 Dirac Equation and Topological Insulators
    1.5 Summary: The Confirmed Family Members
    1.6 Further Reading
    References
    2 Starting from the Dirac Equation
    2.1 Dirac Equation
    2.2 Solutions of Bound States
    2.2.1 Jackiw-Rebbi Solution in One Dimension
    2.2.2 Two Dimensions
    2.. Three and Higher Dimensions
    . Why Not the Dirac Equation
    2.4 dratic Correction to the Dirac Equation
    2.5 Bound State Solutions of the Modified Dirac Equation.
    2.5.1 One Dimension: End States
    2.5.2 Two Dimensions: Helical Edge States
    2.5.3 Three Dimensions: Surface States
    2.5.4 Generalization to Higher-Dimensional Topological Insulators
    2.6 Summary
    2.7 Further Reading
    References
    3 Minimal Lattice Model for Topological Insulator
    3.1 Tight Binding Approximation
    3.2 From Continuous to Lattice Model
    3.3 One-Dimensional Lattice Model
    3.4 Two-Dimensional Lattice Model
    3.4.1 Integer ntum Hall Effect
    3.4.2 ntum Spin Hall Effect
    3.5 Three-Dimensional Lattice Model
    3.6 Parity at the Time Reversal Invariant Momenta
    3.6.1 One-Dimensional Lattice Model
    3.6.2 Two-Dimensional Lattice Model
    3.6.3 Three-Dimensional Lattice Model
    3.7 Summary
    References
    4 Topological Invariants
    4.1 Bloch Theorem and Band Theory
    4.2 Berry Phase
    4.3 ntum Hall Conductance and Chern Number
    4.4 Electric Polarization in a Cyclic Adiabatic Evolution..
    4.5 Thouless Charge Pump
    4.6 Fu-Kane Spin Pump
    4.7 Integer ntum Hall Effect: Laughlin Argument
    4.8 Time Reversal Symmetry and the Z2 Index
    4.9 Generalization to Two and Three Dimensions
    4.10 Phase Diagram of Modified Dirac Equation
    4.11 Further Reading
    References
    5 Topological Phases in One Dimension
    5.1 Su-Schrieffer-Heeger Model for Polyacetylene
    5.2 Ferromagnet with Spin-Orbit Coupling
    5.3 p-Wave Pairing Superconductor
    5.4 Ising Model in a Transverse Field
    5.5 One-Dimensional Maxwell's Equations in Media
    5.6 Summary
    References
    6 ntum Spin Hall Effect
    6.1 Two-Dimensional Dirac Model and the Chern Number
    6.2 From Haldane Model to Kane-Mele Model
    6.2.1 Haldane Model
    6.2.2 Kane-Mele Model
    6.3 Transport of Edge States
    6.3.1 Landauer-Biittiker Formalism
    6.3.2 Transport of Edge States
    6.4 Stability of Edge States
    6.5 Realization of ntum Spin Hall Effect in HgTe/CdTe ntum Well
    6.5.1 Band Structure of HgTe/CdTe ntum Well..
    6.5.2 Exact Solution of Edge States
    6.5.3 Experimental Measurement
    6.6 ntum Hall Effect and ntum Spin Hall Effect:A Case Study
    6.7 Coherent Oscillation Due to the Edge States
    6.8 Further Reading
    References
    7 Three-Dimensional Topological Insulators
    7.1 Family Members of Three-Dimensional Topological Insulators...
    7.1.1 Weak Topological Insulators: PbxSnl-xTe
    7.1.2 Strong Topological Insulators: Bil-xSbx
    7.1.3 Topological Insulators with a Single Dirac Cone: BiSe and BiTe
    7.1.4 Strained HgTe
    7.2 Electronic Model for BiSe
    7.3 Effective Model for Surface States
    7.4 Physical Properties of Topological Insulators
    7.4.1 Absence of Backscattering
    7.4.2 Weak Antilocalization
    7.4.3 Shubnikov-de Haas Oscillation
    7.5 Surface ntum Hall Effect
    7.6 Surface States in a Strong Magnetic Field
    7.7 Topological Insulator Thin Film
    7.7.1 Effective Model for Thin Film
    7.7.2 Structural Inversion Asymmetry
    7.7.3 Experimental Data of ARPES
    7.8 HgTe Thin Film
    7.9 Further Reading
    References
    8 Impurities and Defects in Topological Insulators
    8.1 One Dimension
    8.2 Integral Equation for Bound State Energies
    8.2.1 δ-potential
    8.3 Bound States in Two Dimensions
    8.4 Topological Defects
    8.4.1 Magnetic Flux and Zero-Energy Mode
    8.4.2 Wormhole Effect
    8.4.3 Witten Effect
    8.5 Disorder Effect to Transport
    8.6 Further Reading
    References
    9 Topological Superconductors and Superfluids
    9.1 Complex (p + ip)-Wave Superconductor of Spinless or Spin-Polarized Fermions
    9.2 Spin-Triplet Pairing Superfluidity: 3He-A and 3He-B Phases
    9.2.1 3He: Normal Liquid Phase
    9.2. He-B Phase
    9.. He-A Phase: Equal Spin Pairing
    9.3 Spin-Triplet Superconductor: Sr2RuO4
    9.4 Superconductivity in Doped Topological Insulators
    9.5 Further Reading
    References
    10 Majorana Fermions in Topological Insulators
    10.1 What Is the Majorana Fermion?
    10.2 Majorana Fermions in p-Wave Superconductors
    10.2.1 Zero-Energy Mode Around a ntum Vortex
    10.2.2 Majorana Fermions in Kitaev's Toy Model
    10.. si-One-Dimensional Superconductor
    10.3 Majorana Fermions in Topological Insulators
    10.4 Detection of Majorana Fermions
    10.5 Sau-Lutchyn-Tewari-Das Sarma Model for Topological Superconductor
    10.6 Non-Abelian Statistics and Topological ntum Computing
    10.7 Further Reading
    References
    11 Topological Anderson Insulator
    11.1 Band Structure and Edge States
    11.2 ntized Anomalous Hall Effect
    11.3 Topological Anderson Insulator
    11.4 Effective Medium Theory for Topological Anderson Insulator
    11.5 Band Gap or Mobility Gap
    11.6 Summary
    11.7 Further Reading
    References
    12 Summary: Symmetry and Topological Classification
    12.1 Ten Symmetry Classes for Noninteracting Fermion Systems
    12.2 Physical Systems and the Symmetry Classes
    12.2.1 Standard (Wigner-Dyson) Classes
    12.2.2 Chiral Classes
    12.. Bogoliubov-de Gennes (BdG) Classes
    1. Characterization in the Bulk
    12.4 Five Types in Each Dimension
    12.5 Conclusion
    12.6 Further Reading
    References
    A Derivation of Two Formulae
    A.1 ntization of the Hall Conductance
    A.2 A Simple Formula for the Hall Conductance
    B Time Reversal Symmetry
    B.1 Classical Cases
    B.2 Time Reversal Operator Θ
    B.3 Time Reversal for a Spin-1/2 System
    Index

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购