由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
[正版]动手学深度学习 李沐 AI人工智能机器学习深度学习领域教程书籍 Dive into Deep Learning花
¥ ×1
店铺公告
为保障消费者合理购买需求及公平交易机会,避免因非生活消费目的的购买货囤积商品,抬价转售等违法行为发生,店铺有权对异常订单不发货且不进行赔付。异常订单:包括但不限于相同用户ID批量下单,同一用户(指不同用户ID,存在相同/临近/虚构收货地址,或相同联系号码,收件人,同账户付款人等情形的)批量下单(一次性大于5本),以及其他非消费目的的交易订单。 温馨提示:请务必当着快递员面开箱验货,如发现破损,请立即拍照拒收,如验货有问题请及时联系在线客服处理,(如开箱验货时发现破损,所产生运费由我司承担,一经签收即为货物完好,如果您未开箱验货,一切损失就需要由买家承担,所以请买家一定要仔细验货), 关于退货运费:对于下单后且物流已发货货品在途的状态下,原则上均不接受退货申请,如顾客原因退货需要承担来回运费,如因产品质量问题(非破损问题)可在签收后,联系在线客服。
|
|
动手学深度学习 | ||
定价 | 75.00 | |
出版社 | 人民邮电出版社 | |
版次 | 1 | |
出版时间 | 2019年05月 | |
开本 | 16开 | |
作者 | 阿斯顿·张 等 | |
装帧 | 平装 | |
页数 | 412 | |
字数 | ||
ISBN编码 | 9787115490841 |
本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以下载并运行的 Jupyter记事本,它将文字、公式、图像、代码和运行结果结合在了一起。此外,读者还可以访问并参与书中内容的讨论。
全书的内容分为3个部分:*一部分介绍深度学习的背景,提供预备知识,并包括深度学习*基础的概念和技术;*二部分描述深度学习计算的重要组成部分,还解释近年来令深度学习在多个领域大获成功的卷积神经网络和循环神经网络;第三部分评价优化算法,检验影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。
本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程或附录中描述的线性代数、微分和概率基础。
对本书的赞誉
前言
如何使用本书
资源与支持
主要符号表
第 1 章 深度学习简介 1
1.1 起源 2
1.2 发展 4
1.3 成功案例 6
1.4 特点 7
小结 8
练习 8
第 2 章 预备知识 9
2.1 获取和运行本书的代码 9
2.1.1 获取代码并安装运行环境 9
2.1.2 更新代码和运行环境 11
2.1.3 使用GPU版的MXNet 11
小结12
练习12
2.2 数据操作 12
2.2.1 创建NDArray 12
2.2.2 运算 14
2.2.3 广播机制 16
2.2.4 索引 17
2.2.5 运算的内存开销 17
2.2.6 NDArray和NumPy相互变换18
小结19
练习19
2.3 自动求梯度 19
2.3.1 简单例子 19
2.3.2 训练模式和预测模式 20
2.3.3 对Python控制流求梯度 20
小结21
练习21
2.4 查阅文档 21
2.4.1 查找模块里的所有函数和类 21
2.4.2 查找特定函数和类的使用 22
2.4.3 在MXNet网站上查阅 23
小结 24
练习 24
第3 章 深度学习基础 25
3.1 线性回归 25
3.1.1 线性回归的基本要素 25
3.1.2 线性回归的表示方法 28
小结 30
练习 30
3.2 线性回归的从零开始实现 30
3.2.1 生成数据集 30
3.2.2 读取数据集 32
3.2.3 初始化模型参数 32
3.2.4 定义模型 33
3.2.5 定义损失函数 33
3.2.6 定义优化算法 33
3.2.7 训练模型 33
小结 34
练习 34
3.3 线性回归的简洁实现 35
3.3.1 生成数据集 35
3.3.2 读取数据集 35
3.3.3 定义模型 36
3.3.4 初始化模型参数 36
3.3.5 定义损失函数 37
3.3.6 定义优化算法 37
3.3.7 训练模型 37
小结 38
练习 38
3.4 softmax回归 38
3.4.1 分类问题 38
3.4.2 softmax回归模型 39
3.4.3 单样本分类的矢量计算表达式 40
3.4.4 小批量样本分类的矢量计算表达式 40
3.4.5 交叉熵损失函数 41
3.4.6 模型预测及评价 42
小结 42
练习 42
3.5 图像分类数据集(Fashion-MNIST) 42
3.5.1 获取数据集 42
3.5.2 读取小批量 44
小结 45
练习 45
3.6 softmax回归的从零开始实现 45
3.6.1 读取数据集 45
3.6.2 初始化模型参数 45
3.6.3 实现softmax运算 46
3.6.4 定义模型 46
3.6.5 定义损失函数 47
3.6.6 计算分类准确率 47
3.6.7 训练模型 48
3.6.8 预测 48
小结 49
练习 49
3.7 softmax回归的简洁实现 49
3.7.1 读取数据集 49
3.7.2 定义和初始化模型 50
3.7.3 softmax和交叉熵损失函数 50
3.7.4 定义优化算法 50
3.7.5 训练模型 50
小结 50
练习 50
3.8 多层感知机 51
3.8.1 隐藏层 51
3.8.2 激活函数 52
3.8.3 多层感知机 55
小结 55
练习 55
3.9 多层感知机的从零开始实现 56
3.9.1 读取数据集 56
3.9.2 定义模型参数 56
3.9.3 定义激活函数 56
3.9.4 定义模型 56
3.9.5 定义损失函数 57
3.9.6 训练模型 57
小结 57
练习 57
3.10 多层感知机的简洁实现 57
3.10.1 定义模型 58
3.10.2 训练模型 58
小结 58
练习 58
3.11 模型选择、欠拟合和过拟合 58
3.11.1 训练误差和泛化误差 59
3.11.2 模型选择 59
3.11.3 欠拟合和过拟合 60
3.11.4 多项式函数拟合实验 61
小结 65
练习 65
3.12 权重衰减 65
3.12.1 方法 65
3.12.2 高维线性回归实验 66
3.12.3 从零开始实现 66
3.12.4 简洁实现 68
小结 70
练习 70
3.13 丢弃法 70
3.13.1 方法 70
3.13.2 从零开始实现 71
3.13.3 简洁实现 73
小结 74
练习 74
3.14 正向传播、反向传播和计算图 74
3.14.1 正向传播 74
3.14.2 正向传播的计算图 75
3.14.3 反向传播 75
3.14.4 训练深度学习模型 76
小结 77
练习 77
3.15 数值稳定性和模型初始化 77
3.15.1 衰减和爆炸 77
3.15.2 随机初始化模型参数 78
小结 78
练习 79
3.16 实战Kaggle比赛:房价预测 79
3.16.1 Kaggle比赛 79
3.16.2 读取数据集 80
3.16.3 预处理数据集 81
3.16.4 训练模型 82
3.16.5 k 折交叉验证 82
3.16.6 模型选择 83
3.16.7 预测并在Kaggle提交结果 84
小结 85
练习 85
第4 章 深度学习计算 86
4.1 模型构造 86
4.1.1 继承Block类来构造模型 86
4.1.2 Sequential类继承自Block类 87
4.1.3 构造复杂的模型 88
小结 89
练习 90
4.2 模型参数的访问、初始化和共享 90
4.2.1 访问模型参数 90
4.2.2 初始化模型参数 92
4.2.3 自定义初始化方法 93
4.2.4 共享模型参数 94
小结 94
练习 94
4.3 模型参数的延后初始化 95
4.3.1 延后初始化 95
4.3.2 避免延后初始化 96
小结 96
练习 97
4.4 自定义层 97
4.4.1 不含模型参数的自定义层 97
4.4.2 含模型参数的自定义层 98
小结 99
练习 99
4.5 读取和存储 99
4.5.1 读写NDArray 99
4.5.2 读写Gluon模型的参数 100
小结 101
练习 101
4.6 GPU计算 101
4.6.1 计算设备 102
4.6.2 NDArray的GPU计算 102
4.6.3 Gluon的GPU计算 104
小结 105
练习 105
第5 章 卷积神经网络 106
5.1 二维卷积层 106
5.1.1 二维互相关运算 106
5.1.2 二维卷积层 107
5.1.3 图像中物体边缘检测 108
5.1.4 通过数据学习核数组 109
5.1.5 互相关运算和卷积运算 109
5.1.6 特征图和感受野 110
小结 110
练习 110
5.2 填充和步幅 111
5.2.1 填充 111
5.2.2 步幅 112
小结 113
练习 113
5.3 多输入通道和多输出通道 114
5.3.1 多输入通道 114
5.3.2 多输出通道 115
5.3.3 1×1卷积层 116
小结 117
练习 117
5.4 池化层 117
5.4.1 二维*大池化层和平均池化层 117
5.4.2 填充和步幅 119
5.4.3 多通道 120
小结 120
练习 121
5.5 卷积神经网络(LeNet) 121
5.5.1 LeNet模型 121
5.5.2 训练模型 122
小结 124
练习 124
5.6 深度卷积神经网络(AlexNet) 124
5.6.1 学习特征表示 125
5.6.2 AlexNet 126
5.6.3 读取数据集 127
5.6.4 训练模型 128
小结 128
练习 129
5.7 使用重复元素的网络(VGG) 129
5.7.1 VGG块 129
5.7.2 VGG网络 129
5.7.3 训练模型 130
小结 131
练习 131
5.8 网络中的网络(NiN) 131
5.8.1 NiN块 131
5.8.2 NiN模型 132
5.8.3 训练模型 133
小结 134
练习 134
5.9 含并行连结的网络(GoogLeNet) 134
5.9.1 Inception块 134
5.9.2 GoogLeNet模型 135
5.9.3 训练模型 137
小结 137
练习 137
5.10 批量归一化 138
5.10.1 批量归一化层 138
5.10.2 从零开始实现 139
5.10.3 使用批量归一化层的LeNet 140
5.10.4 简洁实现 141
小结 142
练习 142
5.11 残差网络(ResNet) 143
5.11.1 残差块 143
5.11.2 ResNet模型 145
5.11.3 训练模型 146
小结 146
练习 146
5.12 稠密连接网络(DenseNet) 147
5.12.1 稠密块 147
5.12.2 过渡层 148
5.12.3 DenseNet模型 148
5.12.4 训练模型 149
小结 149
练习 149
第6 章 循环神经网络 150
6.1 语言模型 150
6.1.1 语言模型的计算 151
6.1.2 n 元语法 151
小结 152
练习 152
6.2 循环神经网络 152
6.2.1 不含隐藏状态的神经网络 152
6.2.2 含隐藏状态的循环神经网络 152
6.2.3 应用:基于字符级循环神经网络的语言模型 154
小结 155
练习 155
6.3 语言模型数据集(歌词) 155
6.3.1 读取数据集 155
6.3.2 建立字符索引 156
6.3.3 时序数据的采样 156
小结 158
练习 159
6.4 循环神经网络的从零开始实现 159
6.4.1 one-hot向量 159
6.4.2 初始化模型参数 160
6.4.3 定义模型 160
6.4.4 定义预测函数 161
6.4.5 裁剪梯度 161
6.4.6 困惑度 162
6.4.7 定义模型训练函数 162
6.4.8 训练模型并创作歌词 163
小结 164
练习 164
6.5 循环神经网络的简洁实现 165
6.5.1 定义模型 165
6.5.2 训练模型 166
小结 168
练习 168
6.6 通过时间反向传播 168
6.6.1 定义模型 168
6.6.2 模型计算图 169
6.6.3 方法 169
小结 170
练习 170
6.7 门控循环单元(GRU) 170
6.7.1 门控循环单元 171
6.7.2 读取数据集 173
6.7.3 从零开始实现 173
6.7.4 简洁实现 175
小结 176
练习 176
6.8 长短期记忆(LSTM) 176
6.8.1 长短期记忆 176
6.8.2 读取数据集 179
6.8.3 从零开始实现 179
6.8.4 简洁实现 181
小结 181
练习 182
6.9 深度循环神经网络 182
小结 183
练习 183
6.10 双向循环神经网络 183
小结 184
练习 184
第7 章 优化算法 185
7.1 优化与深度学习 185
7.1.1 优化与深度学习的关系 185
7.1.2 优化在深度学习中的挑战 186
小结 188
练习 189
7.2 梯度下降和随机梯度下降 189
7.2.1 一维梯度下降 189
7.2.2 学习率 190
7.2.3 多维梯度下降 191
7.2.4 随机梯度下降 193
小结 194
练习 194
7.3 小批量随机梯度下降 194
7.3.1 读取数据集 195
7.3.2 从零开始实现 196
7.3.3 简洁实现 198
小结 199
练习 199
7.4 动量法 200
7.4.1 梯度下降的问题 200
7.4.2 动量法 201
·6· 目 录
7.4.3 从零开始实现 203
7.4.4 简洁实现 205
小结 205
练习 205
7.5 AdaGrad算法206
7.5.1 算法 206
7.5.2 特点 206
7.5.3 从零开始实现 208
7.5.4 简洁实现 209
小结 209
练习 209
7.6 RMSProp算法 209
7.6.1 算法 210
7.6.2 从零开始实现 211
7.6.3 简洁实现 212
小结 212
练习 212
7.7 AdaDelta算法 212
7.7.1 算法 212
7.7.2 从零开始实现 213
7.7.3 简洁实现 214
小结 214
练习 214
7.8 Adam算法 215
7.8.1 算法 215
7.8.2 从零开始实现 216
7.8.3 简洁实现 216
小结 217
练习 217
第8 章 计算性能 218
8.1 命令式和符号式混合编程 218
8.1.1 混合式编程取两者之长 220
8.1.2 使用HybridSequential类构造模型 220
8.1.3 使用HybridBlock类构造模型 222
小结 224
练习 224
8.2 异步计算 224
8.2.1 MXNet中的异步计算 224
8.2.2 用同步函数让前端等待计算结果 226
8.2.3 使用异步计算提升计算性能 226
8.2.4 异步计算对内存的影响 227
小结 229
练习 229
8.3 自动并行计算 229
8.3.1 CPU和GPU的并行计算 230
8.3.2 计算和通信的并行计算 231
小结 231
练习 231
8.4 多GPU计算 232
8.4.1 数据并行 232
8.4.2 定义模型 233
8.4.3 多GPU之间同步数据 234
8.4.4 单个小批量上的多GPU训练 236
8.4.5 定义训练函数 236
8.4.6 多GPU训练实验 237
小结 237
练习 237
8.5 多GPU计算的简洁实现 237
8.5.1 多GPU上初始化模型参数 238
8.5.2 多GPU训练模型 239
小结 241
练习 241
第9 章 计算机视觉 242
9.1 图像增广242
9.1.1 常用的图像增广方法 243
9.1.2 使用图像增广训练模型 246
小结 250
练习 250
9.2 微调 250
热狗识别 251
小结 255
练习 255
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格