由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
正版新书]TensorFlow深度学习实战 微课视频版吕云翔 王志鹏 刘
¥ ×1
第1部分基础篇
第1章深度学习简介
1.1计算机视觉
1.1.1定义
1.1.2基本任务
1.1.3传统方法
1.1.4仿生学与深度学习
1.1.5现代深度学习
1.1.6影响卷积神经网络发展的因素
1.2自然语言处理
1.2.1自然语言处理的基本问题
1.2.2传统方法与神经网络方法的比较
1.2.3发展趋势
1.3强化学习
1.3.1什么是强化学习
1.3.2强化学习算法简介
1.3.3强化学习的应用
第2章深度学习框架
2.1Caffe
2.1.1Caffe简介
2.1.2Caffe的特点
2.1.3Caffe概述
……
吕云翔 单位:北京航空航天大学 职务:博士研究生 职称:副教授 性别:男 年龄:50 专业:计算机 学历:博士研究生 研究领域:数据库 研究成果:已出版二十几本教材(其中“计算机导论实践教程”一书获北航2010年教学成果三等奖;“大学计算机英语教程”获北航2012年教学成果二等奖。
(1) 内容涵盖深度学习数学基础讲解,便于没有大学本科数学基础的读者阅读。
(2) 提供实际可运行的代码和让读者可以亲自试验的学习环境。
(3) 对于误差反向传播法、卷积运算等看起来很复杂的技术,帮助读者在实现层面上
理解。
(4) 介绍流行的技术(如Batch Normalization)并进行实现。
(5) 提供真实的案例、完整的构建过程以及相应源代码,使读者能完整感受完成深度
学习项目的过程。
本书以深度学习框架TensorFlow为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了机器学习操作的原理及其在深度学习框架下的实践步骤。 全书共16章,分别介绍了深度学习基础知识、深度学习框架及其对比、机器学习基础知识、深度学习框架TensorFlow的基础知识、Logistic回归、多层感知器、卷积神经网络与计算机视觉、神经网络与自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信能为读者提供有益的学习指导。 本书适合Python深度学习初学者、机器学习算法分析从业人员以及高等院校计算机科学、软件工程等相关专业的师生阅读。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格