返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版 自动控制原理与设计:英文版
  • 新华书店旗下自营,正版全新
    • 作者: [美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini著 | [美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini编 | [美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini译 | [美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini绘
    • 出版社: 电子工业出版社
    • 出版时间:2020-11-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    美阅书店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品参数
    • 作者: [美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini著| [美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini编| [美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini译| [美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini绘
    • 出版社:电子工业出版社
    • 出版时间:2020-11-01
    • 版次:第8版
    • 印次:1
    • 字数:1645.0
    • 页数:904
    • 开本:16开
    • ISBN:9787121404061
    • 版权提供:电子工业出版社
    • 作者:[美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini
    • 著:[美]吉恩·F.富兰克林,[美]J.David powell,[美]Abbas Emami-Naeini
    • 装帧:平装
    • 印次:1
    • 定价:169.00
    • ISBN:9787121404061
    • 出版社:电子工业出版社
    • 开本:16开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2020-11-01
    • 页数:904
    • 外部编号:10931209
    • 版次:第8版
    • 成品尺寸:暂无

    Chapter 1 An Overview and Brief History of Feedback Control
    A Perspective on Feedback Control
    Chapter Overview
    1.1 A Simple Feedback System
    1.2 A First Analysis of Feedback
    1.3 Feedback System Fundamentals
    1.4 A Brief History
    1.5 An Overview of the Book
    Summary
    Review Questions
    Problems
    Chapter 2 Dynamic Models
    A Perspective on Dynamic Models
    Chapter Overview
    2.1 Dynamics of Mechanical Systems
    2.1.1 Translational Motion
    2.1.2 Rotational Motion
    2.1.3 Combined Rotation and Translation
    2.1.4 Complex Mechanical Systems (W)①
    2.1.5 Distributed Parameter Systems
    2.1.6 Summary: Developing Equations of Motion for Rigid Bodies
    2.2 Models of Electric Circuits
    2.3 Models of Electromechanical Systems
    2.3.1 Loudspeakers
    2.3.2 Motors
    △ 2.3.3 Gears
    △ 2.4 Heat and Fluid-Flow Models
    2.4.1 Heat Flow
    2.4.2 Incompressible Fluid Flow
    2.5 Historical Perspective
    Summary
    Review Questions
    Problems
    Chapter 3 Dynamic Response
    A Perspective on System Response
    Chapter Overview
    3.1 Review of Laplace Transforms
    3.1.1 Response by Convolution
    3.1.2 Transfer Functions and Frequency Response
    3.1.3 The ?_ Laplace Transform
    3.1.4 Properties of Laplace Transforms
    3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion
    3.1.6 The Final Value Theorem
    3.1.7 Using Laplace Transforms to Solve Differential Equations
    3.1.8 Poles and Zeros
    3.1.9 Linear System Analysis Using Matlab
    3.2 System Modeling Diagrams
    3.2.1 The Block Diagram
    3.2.2 Block-Diagram Reduction Using Matlab
    3.2.3 Masons Rule and the Signal Flow Graph (W)
    3.3 Effect of Pole Locations
    3.4 Time-Domain Specifications
    3.4.1 Rise Time
    3.4.2 Overshoot and Peak Time
    3.4.3 Settling Time
    3.5 Effects of Zeros and Additional Poles
    3.6 Stability
    3.6.1 Bounded Input-Bounded Output Stability
    3.6.2 Stability of LTI Systems
    3.6.3 Rouths Stability Criterion
    △ 3.7 Obtaining Models from Experimental Data: System Identification (W)
    △ 3.8 Amplitude and Time Scaling (W)
    3.9 Historical Perspective
    Summary
    Review Questions
    Problems
    Chapter 4 A First Analysis of Feedback
    A Perspective on the Analysis of Feedback
    Chapter Overview
    4.1 The Basic Equations of Control
    4.1.1 Stability
    4.1.2 Tracking
    4.1.3 Regulation
    4.1.4 Sensitivity
    4.2 Control of Steady-State Error to Polynomial Inputs: System Type
    4.2.1 System Type for Tracking
    4.2.2 System Type for Regulation and Disturbance Rejection
    4.3 The Three-Term Controller: PID Control
    4.3.1 Proportional Control (P)
    4.3.2 Integral Control (I)
    4.3.3 Derivative Control (D)
    4.3.4 Proportional Plus Integral Control (PI)
    4.3.5 PID Control
    4.3.6 Ziegler-Nichols Tuning of the PID Controller
    4.4 Feedforward Control by Plant Model Inversion
    △ 4.5 Introduction to Digital Control (W)
    △ 4.6 Sensitivity of Time Response to Parameter Change (W)
    4.7 Historical Perspective
    Summary
    Review Questions
    Problems
    Chapter 5 The Root-Locus Design Method
    A Perspective on the Root-Locus Design Method
    Chapter Overview
    5.1 Root Locus of a Basic Feedback System
    5.2 Guidelines for Determining a Root Locus
    5.2.1 Rules for Determining a Positive (180°) Root Locus
    5.2.2 Summary of the Rules for Determining a Root Locus
    5.2.3 Selecting the Parameter Value
    5.3 Selected Illustrative Root Loci
    5.4 Design Using Dynamic Compensation
    5.4.1 Design Using Lead Compensation
    5.4.2 Design Using Lag Compensation
    5.4.3 Design Using Notch Compensation
    △ 5.4.4 Analog and Digital Implementations (W)
    5.5 Design Examples Using the Root Locus
    5.6 Extensions of the Root-Locus Method
    5.6.1 Rules for Plotting a Negative (0°) Root Locus
    △ 5.6.2 Successive Loop ClosureS
    △ 5.6.3 Time Delay (W)
    5.7 Historical Perspective
    Summary
    Review Questions
    Problems
    Chapter 6 The Frequency-Response Design Method
    A Perspective on the Frequency-Response Design Method
    Chapter Overview
    6.1 Frequency Response
    6.1.1 Bode Plot Techniques
    6.1.2 Steady-State Errors
    6.2 Neutral Stability
    6.3 The Nyquist Stability Criterion
    6.3.1 The Argument Principle
    6.3.2 Application of The Argument Principle to Control Design
    6.4 Stability Margins
    6.5 Bodes Gain-Phase Relationship
    6.6 Closed-Loop Frequency Response
    6.7 Compensation
    6.7.1 PD Compensation
    6.7.2 Lead Compensation (W)
    6.7.3 PI Compensation
    6.7.4 Lag Compensation
    6.7.5 PID Compensation
    6.7.6 Design Considerations
    △ 6.7.7 Specifications in Terms of the Sensitivity Function
    △ 6.7.8 Limitations on Design in Terms of the Sensitivity Function
    △ 6.8 Time Delay
    6.8.1 Time Delay via the Nyquist Diagram (W)
    △ 6.9 Alternative Presentation of Data
    6.9.1 Nichols Chart
    6.9.2 The Inverse Nyquist Diagram (W)
    6.10?Historical Perspective
    Summary
    Review Questions
    Problems
    Chapter 7 State-Space Design
    A Perspective on State-Space Design
    Chapter Overview
    7.1 Advantages of State-Space
    7.2 System Description in State-Space
    7.3 Block Diagrams and State-Space
    7.4 Analysis of the State Equations
    7.4.1 Block Diagrams and Canonical Forms
    7.4.2 Dynamic Response from the State Equations
    7.5 Control-Law Design for Full-State Feedback
    7.5.1 Finding the Control Law
    7.5.2 Introducing the Reference Input with Full-State Feedback
    7.6 Selection of Pole Locations for Good Design
    7.6.1 Dominant Second-Order Poles
    7.6.2 Symmetric Root Locus (SRL)
    7.6.3 Comments on the Methods
    7.7 Estimator Design
    7.7.1 Full-Order Estimators
    7.7.2 Reduced-Order Estimators
    7.7.3 Estimator Pole Selection
    7.8 Compensator Design: Combined Control Law and Estimator (W)
    7.9 Introduction of the Reference Input with the Estimator (W)
    7.9.1 General Structure for the Reference Input
    7.9.2 Selecting the Gain
    7.10?Integral Control and Robust Tracking
    7.10.1?Integral Control
    △ 7.10.2?Robust Tracking Control: The Error-Space Approach
    △ 7.10.3?Model-Following Design
    △ 7.10.4?The Extended Estimator
    △ 7.11?Loop Transfer Recovery
    △ 7.12?Direct Design with Rational Transfer Functions
    △ 7.13?Design for Systems with Pure Time Delay
    7.14?Solution of State Equations (W)
    7.15?Historical Perspective
    Summary
    Review Questions
    Problems
    Chapter 8 Digital Control
    A Perspective on Digital Control
    Chapter Overview
    8.1 Digitization
    8.2 Dynamic Analysis of Discrete Systems
    8.2.1 z-Transform
    8.2.2 z-Transform Inversion
    8.2.3 Relationship Between s and z
    8.2.4 Final Value Theorem
    8.3 Design Using Discrete Equivalents
    8.3.1 Tustins Method
    8.3.2 Zero-Order Hold (ZOH) Method
    8.3.3 Matched Pole-Zero (MPZ) Method
    8.3.4 Modified Matched Pole-Zero (MMPZ) Method
    8.3.5 Comparison of Digital Approximation Methods
    8.3.6 Applicability Limits of the Discrete Equivalent Design Method
    8.4 Hardware Characteristics
    8.4.1 Analog-to-Digital (A/D) Converters
    8.4.2 Digital-to-Analog Converters
    8.4.3 Anti-Alias Prefilters
    8.4.4 The Computer
    8.5 Sample-Rate Selection
    8.5.1 Tracking Effectiveness
    8.5.2 Disturbance Rejection
    8.5.3 Effect of Anti-Alias Prefilter
    8.5.4 Asynchronous Sampling
    △ 8.6 Discrete Design
    8.6.1 Analysis Tools
    8.6.2 Feedback Properties
    8.6.3 Discrete Design Example
    8.6.4 Discrete Analysis of Designs
    8.7 Discrete State-Space Design Methods (W)
    8.8 Historical Perspective
    Summary
    Review Questions
    Problems
    Chapter 9 Nonlinear Systems
    A Perspective on Nonlinear Systems
    Chapter Overview
    9.1 Introduction and Motivation: Why Study Nonlinear Systems?
    9.2 Analysis by Linearization
    9.2.1 Linearization by Small-Signal Analysis
    9.2.2 Linearization by Nonlinear Feedback
    9.2.3 Linearization by Inverse Nonlinearity
    9.3 Equivalent Gain Analysis Using the Root Locus
    9.3.1 Integrator Antiwindup
    9.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions
    9.4.1 Stability Analysis Using Describing Functions
    △ 9.5 Analysis and Design Based on Stability
    9.5.1 The Phase Plane
    9.5.2 Lyapunov Stability Analysis
    9.5.3 The Circle Criterion
    9.6 Historical Perspective
    Summary
    Review Questions
    Problems
    Chapter 10 Control System Design: Principles and Case Studies
    A Perspective on Design Principles
    Chapter Overview
    10.1 An Outline of Control Systems Design
    10.2 Design of a Satellites Attitude Control
    10.3 Lateral and Longitudinal Control of a Boeing 747
    ? 10.3.1 Yaw Damper
    ? 10.3.2 Altitude-Hold Autopilot
    10.4 Control of the Fuel-Air Ratio in an Automotive Engine
    10.5 Control of a Quadrotor Drone
    10.6 Control of RTP Systems in Semiconductor Wafer Manufacturing
    10.7 Chemotaxis, or How E. Coli Swims Away from Trouble
    10.8 Historical Perspective
    Summary
    Review Questions
    Problems
    Appendix A Laplace Transforms
    A.1 The ?_ Laplace Transform
    ?A.1.1 Properties of Laplace Transforms
    ?A.1.2 Inverse Laplace Transform by Partial-Fraction Expansion
    ?A.1.3 The Initial Value Theorem
    ?A.1.4 Final Value Theorem
    Appendix B Solutions to the Review Questions
    Appendix C Matlab Commands
    Bibliography

    List of Appendices on the Web①
    Appendix WA A Review of Complex Variables
    Appendix WB Summary of Matrix Theory
    Appendix WC Controllability and Observability
    Appendix WD Ackermanns Formula for Pole Placement
    Appendix W2.1.4 Complex Mechanical Systems
    Appendix W3.2.3 Masons Rule and the Signal-Flow Graph
    Appendix W3.6.3.1 Routh Special Cases
    Appendix W3.7 System Identification
    Appendix W3.8 Amplitude and Time Scaling
    Appendix W4.1.4.1 The Filtered Case
    Appendix W4.2.2.1 Truxals Formula for the Error Constants
    Appendix W4.5 Introduction to Digital Control
    Appendix W4.6 Sensitivity of Time Response to Parameter Change
    Appendix W5.4.4 Analog and Digital Implementations
    Appendix W5.6.3 Root Locus with Time Delay
    Appendix W6.7.2 Digital Implementation of Example 6.15
    Appendix W6.8.1 Time Delay via the Nyquist Diagram
    Appendix W6.9.2 The Inverse Nyquist Diagram
    Appendix W7.8 Digital Implementation of Example 7.31
    Appendix W7.9 Digital Implementation of Example 7.33
    Appendix W7.14 Solution of State Equations
    Appendix W8.7 Discrete State-Space Design Methods

    [美]吉恩·F.富兰克林(GeneF.Franklin),美国斯坦福大学电气工程系教授。国际著名控制学家,IEEE终身会士。于1955年在哥伦双亚大学获得博士学位,曾任斯坦福大学电气工程系主任、IEEE控制系统学会理事、副主席,其研究领域覆盖了控制和各个方面。2005年因其对多个控制领域的基础性贡献而美国自动控制学会**奖Bellman奖。

    本书是自动控制领域的经典著作,以自动控制系统的分析和设计为主线,在回顾自动控制系统动态响应和反馈控制的基本特性基础上,重点介绍了自动控制系统的3种主流设计方法:根轨迹设计方法、频率响应设计方法和状态空间设计方法。此外,还阐述了非线性系统的分析与设计,给出了汽车发动机、无人机、半导体晶圆制造等应用的控制系统设计实例。全书在阐述自动控制原理和设计方法的过程中,适时地穿插了MATLAB仿真源代码和仿真实验结果。

    本书是自动控制领域的经典著作,以自动控制系统的分析和设计为主线,在回顾自动控制系统动态响应和反馈控制的基本特性基础上,重点介绍了自动控制系统的3种主流设计方法:根轨迹设计方法、频率响应设计方法和状态空间设计方法。此外,还阐述了非线性系统的分析与设计,给出了汽车发动机、无人机、半导体晶圆制造等应用的控制系统设计实例。全书在阐述自动控制原理和设计方法的过程中,适时地穿插了MATLAB仿真源代码和仿真实验结果。

    本书是自动控制领域的经典著作,以自动控制系统的分析和设计为主线,在回顾自动控制系统动态响应和反馈控制的基本特性基础上,重点介绍了自动控制系统的3种主流设计方法:根轨迹设计方法、频率响应设计方法和状态空间设计方法。此外,还阐述了非线性系统的分析与设计,给出了汽车发动机、无人机、半导体晶圆制造等应用的控制系统设计实例。全书在阐述自动控制原理和设计方法的过程中,适时地穿插了MATLAB仿真源代码和仿真实验结果。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购