文轩网图书旗舰店
  • 扫码下单

  • 分析(第2卷) Herbert Amann,Joachim Escher 著作 文教 文轩网
  • 新华书店正版
    • 作者: Herbert Amann,Joachim Escher著
    • 出版社: 世界图书出版公司
    • 出版时间:2013-01-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    店铺装修中

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    文轩网图书旗舰店

  •      https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: Herbert Amann,Joachim Escher著
    • 出版社:世界图书出版公司
    • 出版时间:2013-01-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2013-01-01
    • 页数:400
    • 开本:16开
    • 装帧:平装
    • ISBN:9787510047992
    • 国别/地区:中国
    • 版权提供:世界图书出版公司

    分析(第2卷)

    作  者:Herbert Amann,Joachim Escher 著作
    定  价:89
    出 版 社:世界图书出版公司
    出版日期:2013年01月01日
    页  数:400
    装  帧:平装
    ISBN:9787510047992
    主编推荐

    内容简介

    数学

    作者简介

    精彩内容

    目录
    Foreword
    Chapter Ⅵ Integral calculus in one variable
    1 Jump continuous functions
    Staircase and jump continuous functions
    A characterization of jump continuous functions
    The Banach space of jump continuous functions
    2 Continuous extensions
    The extension of uniformly continuous functions
    Bounded linear operators
    The continuous extension of bounded linear operators
    3 The Cauchy-Riemann Integral
    The integral of staircase functions
    The integral of jump continuous functions
    Riemann sums
    4 Properties of integrals
    Integration of sequences of functions
    The oriented integral
    Positivity and monotony of integrals
    Componentwise integration
    The first fundamental theorem of calculus
    The indefinite integral
    The mean value theorem for integrals
    5 The technique of integration
    Variable substitution
    Integration by parts
    The integrals of rational functions
    6 Sums and integrals
    The Bernoulli numbers
    Recursion formulas
    The Bernoulli polynomials
    The Euler-Maclaurin sum formula
    Power sums
    Asymptotic equivalence
    The Biemann ζ function
    The trapezoid rule
    7 Fourier series
    The L2 scalar product
    Approximating in the quadratic mean
    Orthonormal systems
    Integrating periodic functions
    Fourier coefficients
    Classical Fourier series
    Bessel's inequality
    Complete orthonormal systems
    Piecewise continuously differentiable functions
    Uniform convergence
    8 Improper integrals
    Admissible functions
    Improper integrals
    The integral comparison test for series
    Absolutely convergent integrals
    The majorant criterion
    9 The gamma function
    Euler's integral representation
    The gamma function on C\(-N)
    Gauss's representation formula
    The reflection formula
    The logarithmic convexity of the gamma function
    Stirling's formula
    The Euler beta integral
    Chapter Ⅶ Multivariable differential calculus
    1 Continuous linear maps
    The completeness of/L(E, F)
    Finite-dimensional Banach spaces
    Matrix representations
    The exponential map
    Linear differential equations
    Gronwall's lemma
    The variation of constants formula
    Determinants and eigenvalues
    Fundamental matrices
    Second order linear differential equations
    Differentiability
    The definition
    The derivative
    Directional derivatives
    Partial derivatives
    The Jacobi matrix
    A differentiability criterion
    The Riesz representation theorem
    The gradient
    Complex differentiability
    Multivariable differentiation rules
    Linearity
    The chain rule
    The product rule
    The mean value theorem
    The differentiability of limits of sequences of functions
    Necessary condition for local extrema
    Multilinear maps
    Continuous multilinear maps
    The canonical isomorphism
    Symmetric multilinear maps
    The derivative of multilinear maps
    Higher derivatives
    Definitions
    Higher order partial derivatives
    The chain rule
    Taylor's formula
    Functions of m variables
    Sufficient criterion for local extrema
    6 Nemytskii operators and the calculus of variations
    Nemytskii operators
    The continuity of Nemytskii operators
    The differentiability of Nemytskii operators
    The differentiability of parameter-dependent integrals
    Variational problems
    The Euler-Lagrange equation
    Classical mechanics
    7 Inverse maps
    The derivative of the inverse of linear maps
    The inverse function theorem
    Diffeomorphisms
    The solvability of nonlinear systems of equations
    8 Implicit functions
    Differentiable maps on product spaces
    The implicit function theorem
    Regular values
    Ordinary differential equations
    Separation of variables
    Lipschitz continuity and uniqueness
    The Picard-Lindelof theorem
    9 Manifolds
    Submanifolds of Rn
    Graphs
    The regular value theorem
    The immersion theorem
    Embeddings
    Local charts and parametrizations
    Change of charts
    10 Tangents and normals
    The tangential in Rn
    The tangential space
    Characterization of the tangential space
    Differentiable maps
    The differential and the gradient
    Normals
    Constrained extrema
    Applications of Lagrange multipliers
    Chapter Ⅷ Line integrals
    1 Curves and their lengths
    The total variation
    Rectifiable paths
    Differentiable curves
    Rectifiable curves
    2 Curves in Rn
    Unit tangent vectors
    Paramctrization by arc length
    Oriented bases
    The Frenet n-frame
    Curvature of plane curves
    Identifying lines and circles
    Instantaneous circles along curves
    The vector product
    The curvature and torsion of space curves
    3 Pfaff forms
    Vector fields and Pfaff forms
    The canonical basis
    Exact forms and gradient fields
    The Poincare lemma
    Dual operators
    Transformation rules
    Modules
    4 Line integrals
    The definition
    Elementary properties
    The fundamental theorem of line integrals
    Simply connected sets
    The homotopy invariance of line integrals
    5 Holomorphic functions
    Complex line integrals
    Holomorphism
    The Cauchy integral theorem
    The orientation of circles
    The Cauchy integral formula
    Analytic functions
    Liouville's theorem
    The Fresnel integral
    The maximum principle
    Harmonic functions
    Goursat's theorem
    The Weierstrass convergence theorem
    6 Meromorphie functions
    The Laurent expansion
    Removable singularities
    Isolated singularities
    Simple poles
    The winding number
    The continuity of the winding number
    The generalized Cauchy integral theorem
    The residue theorem
    Fourier integrals
    References
    Index

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购